【題目】在平面直角坐標(biāo)系中,直線y2x+4與兩坐標(biāo)軸分別交于AB兩點.

1)若一次函數(shù)y=﹣x+m與直線AB的交點在第二象限,求m的取值范圍;

2)若My軸上一點,Nx軸上一點,直線AB上是否存在兩點P,Q,使得以M,N,PQ四點為頂點的四邊形是正方形.若存在,求出M,N兩點的坐標(biāo),若不存在,請說明理由.

【答案】1m4;(2M0),N(﹣,0)或M0,﹣),N,0)或M0,﹣4),N(﹣0);

【解析】

1)根據(jù)題意聯(lián)立一次函數(shù)解析式與直線AB的解析式,據(jù)此進一步用表示出,最后根據(jù)第二象限的點的坐標(biāo)特征加以分析即可;

2)首先求出A、B兩點坐標(biāo),然后根據(jù)題意分圖1、圖2、圖3共三種情況結(jié)合相似三角形性質(zhì)進一步分析求解即可.

1)聯(lián)立,得:,

∵交點位于第二象限,

,

;

2)當(dāng)時,

A0,4),

當(dāng)時,,即:,

B0),

OA4OB2

如圖1,過點QQH軸于H,

MNAB,

∴△NMO~BAO

,

設(shè)ON,則OM,

∵∠MNQ90°,

∴∠QNH+MNO=∠MNO+NMO90°,

∴∠QNH=∠NMO,

在△QNH和△NMO中,

∵∠QNH=∠NMO,∠QHN=NOMQN=MN,

∴△QNHNMOAAS),

QHON,HNOM=2

易得:△BQH~BAO,

,

BH,

OBBH+HN+ON,

2,解得,

M0),N,0);

如圖2,過點PPH軸于H

易證△PNH~BAO,

,

設(shè)PHb,則NH2b,

同理證得△PNHNMO,

PHONbHNOM2b,

OHHNOHb,

易得:△BPH~BAO

,

BHb

OBBH+OH,

2b+b,解得b

M0,),N,0);

如圖3,過點PPH軸于H,PEy軸于EQFy軸于F,

易得:△PAE~BAO,

,

設(shè)PEc,則AE2c,

同理證得△PNHPME,

PHPEOEc,則AE2c,

OAAE+OE,

42c+c,解得c,

∵△MQFPME,

MFPEOE,EMFQ,

EMOFFQ,設(shè)EMOFFQm,

Q(﹣m,﹣m),代入y2x+4中,得﹣m=﹣2m+4,解得m4,

NONH+OH,∴N0),

OFm4

M0,﹣4).

綜上所述M0,),N,0)或M0,),N,0)或M0,﹣4),N0).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形中,對角線、相交于,,、、分別是、、的中點,下列結(jié)論:

;平分;⑤四邊形是菱形.

其中正確的是(  )

A.①②③B.①③④C.①②D.②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了準(zhǔn)備“歡樂頌——創(chuàng)意市場”,初2020級某同學(xué)到批發(fā)市場購買了兩種原材料,的單價為每件6元,的單價為每件3元.該同學(xué)的創(chuàng)意作品需要材料的數(shù)量是材料數(shù)量的2倍,同時,為了減少成本,該同學(xué)購買原材料的總費用不超過480元.

1)該同學(xué)最多購買多少件材料;

2)在該同學(xué)購買材料最多的前提下,用所購買的,兩種材料全部制作作品,在制作中其他費用共花了520元,活動當(dāng)天,該同學(xué)在成本價(購買材料費用+其他費用)的基礎(chǔ)上整體提高標(biāo)價,但無人問津,于是該同學(xué)在標(biāo)價的基礎(chǔ)上降低出售,最終,在活動結(jié)束時作品賣完,這樣,該同學(xué)在本次活動中賺了,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC三個頂點的坐標(biāo)分別為A0,﹣3)、B3,﹣2)、C2,﹣4),在正方形網(wǎng)格中,每個小正方形的邊長是1個單位長度.

1)畫出△ABC向上平移4個單位得到的△A1B1C1;

2)以點C為位似中心,在網(wǎng)格中畫出△A2B2C,使△A2B2C與△ABC位似,且△A2B2C與△ABC的位似比為21,并直接寫出點B2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將邊長為8的正方形紙片ABCD折疊,使點D落在BC邊的點E處,點A落在點F處,折痕為MN,若MN4,則線段CN的長是____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖:直線ABy=﹣3x+3與兩坐標(biāo)軸交于A,B兩點.

1)過點OOCAB于點C,求OC的長;

2)將△AOB沿AB翻折到△ABD,點O與點D對應(yīng),求直線BD的解析式;

3)在(2)的條件下,正比例函數(shù)ykx與直線BD交于P,直線AB交于Q,若OP3OQ,求正比例函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形 OABC 的邊 OA x 軸重合,B 的坐標(biāo)為(﹣1,2),將矩形 OABC 繞平面內(nèi)一點 P 順時針旋轉(zhuǎn) 90°,使 A、C 兩點恰好落在反比例函數(shù) y 的圖象上,則旋轉(zhuǎn)中心 P 點的坐標(biāo)是(

A. ,﹣ B. ,﹣ C. ,﹣ D. ,﹣

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料:

某同學(xué)在計算34+1)(42+1)時,發(fā)現(xiàn)把3寫成4-1后,可以連續(xù)運用平方差公式計算,

34+1)(42+1

=4-1)(4+1)(42+1

=42-1)(42+1

=44-1

=256-1

=255

請借鑒該同學(xué)的經(jīng)驗,計算下列各式的值:

1)(2+1)(22+1)(24+1)(28+122019+1

2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖1,正方形ABCD的邊長為5,點E、F分別在邊AB、AD的延長線上,且BE=DF,連接EF.

(1)證明:EFAC;

(2)將AEF繞點A順時針方向旋轉(zhuǎn),當(dāng)旋轉(zhuǎn)角α滿足0°<α<45°時,設(shè)EF與射線AB交于點G,與AC交于點H,如圖所示,試判斷線段FH、HG、GE的數(shù)量關(guān)系,并說明理由.

(3)若將AEF繞點A旋轉(zhuǎn)一周,連接DF、BE,并延長EB交直線DF于點P,連接PC,試說明點P的運動路徑并求線段PC的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案