【題目】已知,如圖1,正方形ABCD的邊長為5,點E、F分別在邊AB、AD的延長線上,且BE=DF,連接EF.
(1)證明:EF⊥AC;
(2)將△AEF繞點A順時針方向旋轉(zhuǎn),當旋轉(zhuǎn)角α滿足0°<α<45°時,設(shè)EF與射線AB交于點G,與AC交于點H,如圖所示,試判斷線段FH、HG、GE的數(shù)量關(guān)系,并說明理由.
(3)若將△AEF繞點A旋轉(zhuǎn)一周,連接DF、BE,并延長EB交直線DF于點P,連接PC,試說明點P的運動路徑并求線段PC的取值范圍.
【答案】(1)證明見解析;(2)FH2+GE2=HG2,理由見解析;(3)0≤PC≤5.
【解析】
(1)先證明AE=AF,根據(jù)等腰三角形三線合一的性質(zhì)可得結(jié)論;
(2)如圖2,作輔助線,構(gòu)建全等三角形,先證明△AGH≌△AGK,得GH=GK,由△AFH≌△AEK,得∠AEK=∠AFH=45°,F(xiàn)H=EK,利用勾股定理得:KG2=EG2+EK2,根據(jù)相等關(guān)系線段等量代換可得結(jié)論:FH2+GE2=HG2;
(3)如圖3,先證明∠FPE=∠FAE=90°,根據(jù)90°的圓周角所對的弦是直徑可得:點P的運動路徑是:以BD為直徑的圓,如圖4,可得PC的取值范圍.
(1)證明:如圖1,
∵四邊形ABCD是正方形,
∴AD=AB,∠DAC=∠BAC,
∵BE=DF,
∴AD+DF=AB+BE,即AF=AE,
∴AC⊥EF;
(2)解:FH2+GE2=HG2,理由是:
如圖2,過A作AK⊥AC,截取AK=AH,連接GK、EK,
∵∠CAB=45°,
∴∠CAB=∠KAB=45°,
∵AG=AG,
∴△AGH≌△AGK,
∴GH=GK,
由旋轉(zhuǎn)得:∠FAE=90°,AF=AE,
∵∠HAE=90°,
∴∠FAH=∠KAE,
∴△AFH≌△AEK,
∴∠AEK=∠AFH=45°,F(xiàn)H=EK,
∵∠AEH=45°,
∴∠KEG=45°+45°=90°,
Rt△GKE中,KG2=EG2+EK2,
即:FH2+GE2=HG2;
(3)解:如圖3,
∵AD=AB,∠DAF=∠BAE,AE=AF,
∴△DAF≌△BAE,
∴∠DFA=∠BEA,
∵∠PNF=∠ANE,
∴∠FPE=∠FAE=90°,
∴將△AEF繞點A旋轉(zhuǎn)一周,總存在直線EB與直線DF垂直,
∴點P的運動路徑是:以BD為直徑的圓,如圖4,
當P與C重合時,PC最小,PC=0,
當P與A重合時,PC最大為5,
∴線段PC的取值范圍是:0≤PC≤5.
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,直線y=2x+4與兩坐標軸分別交于A,B兩點.
(1)若一次函數(shù)y=﹣x+m與直線AB的交點在第二象限,求m的取值范圍;
(2)若M是y軸上一點,N是x軸上一點,直線AB上是否存在兩點P,Q,使得以M,N,P,Q四點為頂點的四邊形是正方形.若存在,求出M,N兩點的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】益民商店經(jīng)銷某種商品,進價為每件80元,商店銷售該商品每件售價高干8元且不超過120元若售價定為每件120元時,每天可銷售200件,市場調(diào)查反映:該商品售價在120元的基礎(chǔ)上,每降價1元,每天可多銷售10件,設(shè)該商品的售價為元,每天銷售該商品的數(shù)量為件.
(1)求與之間的函數(shù)關(guān)系式;
(2)商店在銷售該商品時,除成本外每天還需支付其余各種費用1000元,益民商店在某一天銷售該商品時共獲利8000元,求這一天該商品的售價為多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖分別是兩根木棒及其影子的情形.
(1)哪個圖反映了太陽光下的情形?哪個圖反映了路燈下的情形?
(2)在太陽光下,已知小明的身高是1.8米,影長是1.2米,旗桿的影長是4米,求旗桿的高;
(3)請在圖中分別畫出表示第三根木棒的影長的線段.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A是雙曲線y=﹣在第二象限分支上的一個動點,連接AO并延長交另一分支于點B,以AB為底作等腰△ABC,且∠ACB=120°,點C在第一象限,隨著點A的運動,點C的位置也不斷變化,但點C始終在雙曲線y=上運動,則k的值為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平行四邊形中,延長至使,連接交于點,點是線段的中點.
(1)如圖1,若,,求平行四邊形的面積;
(2)如圖2,過點作交于點,于點,連接,若,求證:.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題背景
如圖1,在正方形ABCD的內(nèi)部,作∠DAE=∠ABF=∠BCG=∠CDH,根據(jù)三角形全等的條件,易得△DAE≌△ABF≌△BCG≌△CDH,從而得到四邊形EFGH是正方形。
類比研究
如圖2,在正△ABC的內(nèi)部,作∠BAD=∠CBE=∠ACF,AD,BE,CF兩兩相交于D,E,F(xiàn)三點(D,E,F(xiàn)三點不重合)。
(1)△ABD,△BCE,△CAF是否全等?如果是,請選擇其中一對進行證明;
(2)△DEF是否為正三角形?請說明理由;
(3)進一步探究發(fā)現(xiàn),△ABD的三邊存在一定的等量關(guān)系,設(shè),,,請?zhí)剿?/span>,,滿足的等量關(guān)系。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】近日,中國工程院院士、“雜交水稻之父”袁隆平團隊選育培植的耐鹽堿水稻(即海水稻)在山東青島等六個試驗基地開始春播育秧,預(yù)計今年的種植規(guī)模將超一萬畝.已知去年某基地甲、乙兩塊實驗田海水稻的總產(chǎn)量都是3600千克,乙實驗田海水稻種植面積是甲實驗田的,而乙實驗田海水稻平均畝產(chǎn)量比甲多60千克.
(1)求甲、乙兩塊實驗田種植海水稻的面積;
(2)經(jīng)過科學家的努力,海水稻正從試驗田走向餐桌,某電商新購進A、B兩種包裝的海水稻產(chǎn)品共50袋,其進價、標價及優(yōu)惠方案如下表所示.若要保證這批海水稻產(chǎn)品全部售出后所得利潤不少于1000元,該電商至少要購進A種包裝的海水稻產(chǎn)品多少袋?
包裝類型 | A | B |
進價(元/袋) | 100 | 30 |
標價(元/袋) | 150 | 50 |
優(yōu)惠方案 | 全部九折 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC,點A在BC邊的上方,把△ABC繞點B逆時針方向旋轉(zhuǎn)60°得△DBE,繞點C順時針方向旋轉(zhuǎn)60°得△FEC,連接AD,AF.
(1)△ABD,△ACF,△BCE是什么特殊三角形?請說明理由;
(2)當△ABC滿足什么條件時,四邊形ADEF是正方形?請說明理由;
(3)當△ABC滿足什么條件時,以點A,D,E,F為頂點的四邊形不存在?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com