【題目】如圖,在平面直角坐標系中,直線y=2x+6與x軸交于點A,與y軸交于點B,過點B的直線交x軸于點C,且AB=BC.
(1)求直線BC的解析式;
(2)點P為線段AB上一點,點Q為線段BC延長線上一點,且AP=CQ,設點Q橫坐標為m,求點P的坐標(用含m的式子表示,不要求寫出自變量m的取值范圍);
(3)在(2)的條件下,點M在y軸負半軸上,且MP=MQ,若∠BQM=45°,求直線PQ的解析式.
【答案】(1)y=﹣2x+6;(2)點P(m﹣6,2m﹣6);(3)y=﹣x+
【解析】
(1)先求出點A,點B坐標,由等腰三角形的性質可求點C坐標,由待定系數(shù)法可求直線BC的解析式;
(2)證明△PGA≌△QHC(AAS),則PG=HQ=2m﹣6,故點P的縱坐標為:2m﹣6,而點P在直線AB上,即可求解;
(3)由“SSS”可證△APM≌△CQM,△ABM≌△CBM,可得∠PAM=∠MCQ,∠BQM=∠APM=45°,∠BAM=∠BCM,由“AAS”可證△APE≌△MAO,可得AE=OM,PE=AO=3,可求m的值,進而可得點P,點Q的坐標,即可求直線PQ的解析式.
(1)∵直線y=2x+6與x軸交于點A,與y軸交于點B,
∴點B(0,6),點A(﹣3,0),
∴AO=3,BO=6,
∵AB=BC,BO⊥AC,
∴AO=CO=3,
∴點C(3,0),
設直線BC解析式為:y=kx+b,則,解得:,
∴直線BC解析式為:y=﹣2x+6;
(2)如圖1,過點P作PG⊥AC于點G,過點Q作HQ⊥AC于點H,
∵點Q橫坐標為m,
∴點Q(m,﹣2m+6),
∵AB=CB,
∴∠BAC=∠BCA=∠HCQ,
又∵∠PGA=∠QHC=90°,AP=CQ,
∴△PGA≌△QHC(AAS),
∴PG=HQ=2m﹣6,
∴點P的縱坐標為:2m﹣6,
∵直線AB的表達式為:y=2x+6,
∴2m﹣6=2x+6,解得:x=m﹣6,
∴點P(m﹣6,2m﹣6);
(3)如圖2,連接AM,CM,過點P作PE⊥AC于點E,
∵AB=BC,BO⊥AC,
∴BO是AC的垂直平分線,
∴AM=CM,且AP=CQ,PM=MQ,
∴△APM≌△CQM(SSS)
∴∠PAM=∠MCQ,∠BQM=∠APM=45°,
∵AM=CM,AB=BC,BM=BM,
∴△ABM≌△CBM(SSS)
∴∠BAM=∠BCM,
∴∠BCM=∠MCQ,且∠BCM+∠MCQ=180°,
∴∠BCM=∠MCQ=∠PAM=90°,且∠APM=45°,
∴∠APM=∠AMP=45°,
∴AP=AM,
∵∠PAO+∠MAO=90°,∠MAO+∠AMO=90°,
∴∠PAO=∠AMO,且∠PEA=∠AOM=90°,AM=AP,
∴△APE≌△MAO(AAS)
∴AE=OM,PE=AO=3,
∴2m﹣6=3,
∴m=,
∴Q(,﹣3),P(﹣,3),
設直線PQ的解析式為:y=ax+c,
∴,解得:,
∴直線PQ的解析式為:y=﹣x+.
科目:初中數(shù)學 來源: 題型:
【題目】隨著移動計算技術和無線網(wǎng)絡的快速發(fā)展,移動學習方式越來越引起人們的關注,某校計劃將這種學習方式應用到教育學中,從全校1500名學生中隨機抽取了部分學生,對其家庭中擁有的移動設備的情況進行調查,并繪制出如下的統(tǒng)計圖①和圖②,根據(jù)相關信息,解答下列問題:
(1)本次接受隨機抽樣調查的學生人數(shù)為 ,圖①中m的值為 ;
(2)求本次調查獲取的樣本數(shù)據(jù)的眾數(shù)、中位數(shù)和平均數(shù);
(3)根據(jù)樣本數(shù)據(jù),估計該校1500名學生家庭中擁有3臺移動設備的學生人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)的圖象分別與軸和軸交于,兩點,且與正比例函數(shù)的圖象交于點.
(1)求的值;
(2)求正比例函數(shù)的表達式;
(3)點是一次函數(shù)圖象上的一點,且的面積是3,求點的坐標;
(4)在軸上是否存在點,使的值最。咳舸嬖,求出點的坐標,若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知Rt △ABC中,AC=BC,∠C=90°,D為AB邊的中點,∠EDF=90°,∠EDF繞D點旋轉,它的兩邊分別交AC、CB的延長線于E、F.下面結論一定成立的是______.(填序號)
①CD=AB;②DE=DF;③S△DEF=2S△CEF;④S△DEF-S△CEF=S△ABC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在等腰Rt△ABC中,AB=AC,∠BAC=90°
(1)如圖1,D,E是等腰Rt△ABC斜邊BC上兩動點,且∠DAE=45°,將△ABE繞點A逆時針旋轉90后,得到△AFC,連接DF
①求證:△AED≌△AFD;
②當BE=3,CE=7時,求DE的長;
(2)如圖2,點D是等腰Rt△ABC斜邊BC所在直線上的一動點,連接AD,以點A為直角頂點作等腰Rt△ADE,當BD=3,BC=9時,求DE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c 的圖象與 x 軸交于 B、C 兩點,交 y 軸于點 A.
(1)根據(jù)圖象請用“>”、“<”或“=”填空:a 0,b 0,c 0;
(2)如果 OC=OA= OB,BC=3,求這個二次函數(shù)的解析式;
(3) 在(2)中拋物線的對稱軸上,存在點 Q 使得△OQA 的周長最短,試求出點 Q 的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲乙兩商店出售同樣的茶壺和茶杯,茶壺每只定價20元,茶杯每只定價5元,兩家商店搞促銷活動,甲店:買一只茶壺贈一只茶杯;乙店:按定價的9折優(yōu)惠,某顧客需購買茶壺4只,茶杯若干只(不少于4只).
(1)設購買茶杯數(shù)為(只),在甲店購買的付款為(元),在乙店購買的付款數(shù)為(元),分別寫出在兩家商店購物的付款數(shù)與茶杯數(shù)之間的關系式;
(2)當購買多少只茶杯時,兩家商店的花費相同?
(3)當購買20只茶杯時,去哪家商店購物比較合算?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在國家的宏觀調控下,某市的商品房成交價由今年3月份的5000元/m2下降到5月份的4050元/m2.
(1)問4、5兩月平均每月降價的百分率是多少?
(2)如果房價繼續(xù)回落,按此降價的百分率,你預測到7月分該市的商品房成交均價是否會跌破3000元/m2?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在平面直角坐標系中,A(a,0)、B(0,b),且|a+2|+(b+2a)2=0,點P為x軸上一動點,連接BP,在第一象限內(nèi)作BC⊥AB且BC=AB
(1) 求點A、B的坐標
(2) 如圖1,連接CP.當CP⊥BC時,作CD⊥BP于點D,求線段CD的長度
(3) 如圖2,在第一象限內(nèi)作BQ⊥BP且BQ=BP,連接PQ.設P(p,0),直接寫出S△PCQ=_____
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com