【題目】已知:如圖,在平面直角坐標(biāo)系中,A(a,0)、B(0,b),且|a2|(b2a)20,點Px軸上一動點,連接BP,在第一象限內(nèi)作BCABBCAB

(1) 求點A、B的坐標(biāo)

(2) 如圖1,連接CP.當(dāng)CPBC時,作CDBP于點D,求線段CD的長度

(3) 如圖2,在第一象限內(nèi)作BQBPBQBP,連接PQ.設(shè)P(p0),直接寫出SPCQ_____

【答案】1A-2,0),B04);(2CD=2;(3

【解析】

1)由非負(fù)數(shù)的性質(zhì),可求出a、b的值,得到A、B的坐標(biāo);

2)過CCEOBE,與PB交于F,易證△AOB≌△BEC,可得OA=BE=2,即EOB中點,所以EF為△BOP的中位線,FRtBCP斜邊BP上的中點,所以,所以∠BCF=CBD=ABO,再證△AOB≌△CDB即可得CD=OA.

3)過BBGCQ于點G,延長QCx軸交于H,通過證△ABP≌△CBQ,△BOP≌△BGQ可推出OBGH為矩形,以CQ為底,PH為高求面積.

解:(1)∵|a2|(b2a)20

a+2=0,b+2a=0,解得a=-2,b=4,

A-2,0),B0,4

2)如圖所示,過CCEOBE,與PB交于F,

BCAB,∴∠ABO+EBC=90°,

RtBCE中,∠EBC+BCE=90°,

∴∠ABO=BCE

在△AOB和△BEC中,

∴△AOB≌△BECAAS

BE=AO=2,又∵OB=4,∴EOB的中點,

ECOP,∴EF為△BOP的中位線,則FBP的中點,

RtBCP中,CF為斜邊上的中線,

∴∠BCE=CBD=ABO

在△AOB和△CDB

∴△AOB≌△CDBAAS

CD=AO=2

3)如下圖所示,過BBGCQ于點G,延長QCx軸交于H

∵∠ABP+PBC=90°,∠PBC+CBQ=90°,

∴∠ABP=CBQ

在△ABP與△CBQ中,

∴△ABP≌△CBQSAS

∴∠BPO=BQGCQ=AP=2+p,

在△BOP和△BGQ中,

∴△BOP≌△BGQAAS

∴∠OBP=GBQBG=BO=4

又∵∠GBQ+PBG=90°

∴∠OBP+PBG=90°,即∠OBG=90°,

在四邊形OBGH中,∠OBG=BOG=BGH=90°,

∴∠OHG=90°,∴PH是△PCQCQ邊上的高,

PH=OH-OP=4-p

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y2x+6x軸交于點A,與y軸交于點B,過點B的直線交x軸于點C,且ABBC

1)求直線BC的解析式;

2)點P為線段AB上一點,點Q為線段BC延長線上一點,且APCQ,設(shè)點Q橫坐標(biāo)為m,求點P的坐標(biāo)(用含m的式子表示,不要求寫出自變量m的取值范圍);

3)在(2)的條件下,點My軸負(fù)半軸上,且MPMQ,若∠BQM45°,求直線PQ的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,梯形ABCD中,ABCD,AB=14,AD= 4 , CD=7.直線l經(jīng)過A,D兩點,且sinDAB=動點P在線段AB上從點A出發(fā)以每秒2個單位的速度向點B運動,同時動點Q從點B出發(fā)以每秒5個單位的速度沿B→C→D的方向向點D運動,過點PPM垂直于AB,與折線A→D→C相交于點M,當(dāng)P,Q兩點中有一點到達(dá)終點時,另一點也隨之停止運動.設(shè)點P,Q運動的時間為t秒(t>0),MPQ的面積為S.

(1)求腰BC的長;

(2)當(dāng)QBC上運動時,求St的函數(shù)關(guān)系式;

(3)(2)的條件下,是否存在某一時刻t,使得△MPQ的面積S是梯形ABCD面積的?若存在,請求出t的值;若不存在,請說明理由;

(4)隨著P,Q兩點的運動,當(dāng)點M在線段DC上運動時,設(shè)PM的延長線與直線l相交于點N,試探究:當(dāng)t為何值時,△QMN為等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點B在線段AC上,點E在線段BD上,∠ABD=∠DBC,AB=DB,EB=CB,M,N分別是AE,CD的中點。試探索BM和BN的關(guān)系,并證明你的結(jié)論。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABCRtCED(∠ACB=∠CDE90°),點DBC上,ABCE相交于點F

(1) 如圖1,直接寫出ABCE的位置關(guān)系

(2) 如圖2,連接ADCE于點G,在BC的延長線上截取CHDB,射線HGABK,求證:HKBK

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年某市水果大豐收,兩個水果基地分別收獲同種水果件、件,現(xiàn)需把這些水果全部運往甲、乙兩銷售點,從基地運往甲、乙兩銷售點的費用分別為每件元和元,從基地運往甲、乙兩銷售點的費用分別為每件元和元,現(xiàn)甲銷售點需要水果件,乙銷售點需要水果件.

設(shè)從基地運往甲銷售點水果件,總運費為元,請用含的代數(shù)式表示,并寫出的取值范圍;

若總運費不超過元,且基地運往甲銷售點的水果不低于件,試確定運費最低的運輸方案,并求出最低運費.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校與圖書館在同一條筆直道路上,甲從學(xué)校去圖書館,乙從圖書館回學(xué)校,甲、乙兩人都勻速步行且同時出發(fā),乙先到達(dá)目的地,兩人之間的距離(米)與時間(分鐘)之間的函數(shù)關(guān)系如圖所示,則下列說法正確的是(

①當(dāng)分鐘時甲乙兩人相遇;

②甲的速度為40/分鐘;

③乙的速度為50/分鐘;

④乙到達(dá)目的地時,甲離目的地的距離為800米.

A.①②B.③④C.①②④D.①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)重慶軌道集團(tuán)提供的日客運量統(tǒng)計,2019221日重慶軌道交通首次日客運量突破300萬乘次,其中近期開通的重慶軌道交通環(huán)線日客運量為21.5萬乘次.據(jù)了解,某工作日上午7點至9點軌道環(huán)線四公里站有20列列車進(jìn)出站,每列車進(jìn)出站時,將上車和下車的人數(shù)記錄下來,各得到20個數(shù)據(jù),并將數(shù)據(jù)進(jìn)行整理,繪制成了如下兩幅不完整統(tǒng)計圖.(數(shù)據(jù)分組為:組:,組:,組:,組:,組:)

I.上車人數(shù)在組的是:190,190,191,192,193193,195,196,198,198198,198

II.上車人數(shù)的平均數(shù)、中位數(shù)如下表:

平均數(shù)

中位數(shù)

上車人數(shù)()

194

a

根據(jù)以上信息,回答下列問題:

(1)請補(bǔ)全頻數(shù)分布直方圖;

(2)表中________,扇形統(tǒng)計圖中_________,扇形統(tǒng)計圖中組所在的圓心角度數(shù)為________度;

(3)請利用平均數(shù),估算一周內(nèi)5個工作日的上午7點至9點重慶軌道環(huán)線四公里站的上車總?cè)藬?shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在四邊形ABCD中,∠BAD+BCD=180°, AC平分∠BAD,過點CCEAD,垂足為E, CD=4,AE=10,則四邊形ABCD的周長是____________________.

查看答案和解析>>

同步練習(xí)冊答案