【題目】如圖,在平面直角坐標(biāo)系中,點為坐標(biāo)原點.拋物線分別交軸于、兩點,交軸于點,

1)求該拋物線的解析式.

2)如圖2,點為第二象限拋物線上一點,過點于點,設(shè)點的橫坐標(biāo)為,線段的長度為,求的函數(shù)關(guān)系式(不要求寫出自變量的取值范圍);

3)在(2)的條件下,當(dāng)直線經(jīng)過點時,如圖3,點在線段上,點在線段上,且,的面積為,求的長.

【答案】1 2 3

【解析】

1)利用OA=OC,待定系數(shù)法求解二次函數(shù)解析式.

2)過P軸的垂線,用銳角三角函數(shù)建立PDPM之間的聯(lián)系,用二次函數(shù)與一次函數(shù)求解PM的長度,從而得到答案.

3)延長DFABN,過F,D作好AB的垂線,利用面積與相似三角形求解FN,,DN的數(shù)量關(guān)系,再利用,找到,利用相似三角形性質(zhì)表示AN的長,最后化歸到直角三角形DNQ中,利用勾股定理得到答案.

解:(1)因為:,

所以點C,所以,

又因為

所以,把代入解析式得:

,即

解得:(舍去),所以,

所以拋物線為

2)如圖,過P軸與N,交ACM,又,

所以

因為,所以,

因為,所以

所以

由(1)得,所以 直線AC,

因為,軸,

所以

所以

所以

3)如圖,延長DFABN,過F,D分別作,垂足分別為HQ,因為拋物線為,所以B10),A-3,0

所以AB=4,因為的面積為,

所以 ,所以,

因為A-3,0),C0-3),

所以

因為

所以

所以

設(shè),則

因為,

所以

所以,

又因為

所以

所以 所以,

所以

在直角三角形DNQ中,

所以

解得: ,(負(fù)根舍去)

所以

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓內(nèi)接四邊形ABCD,AB是⊙O的直徑,ODABC于點E

1)求證:BCD為等腰三角形;

2)若BE4,AC6,求DE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)()圖象的頂點為,其圖象與軸的交點,的橫坐標(biāo)分別為3.下列結(jié)論:

;②;③;④當(dāng)時,是等腰直角三角形.其中結(jié)論正確的個數(shù)是(  )

A.4B.3C.2D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線軸交于點,且過拋物線的頂點和拋物線上的另一點.

1)若點

①求拋物線解析式;

②若,求直線解析式.

2)若,過點軸的平行線與拋物線的對稱軸交于點,當(dāng)時,求的面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知反比例函數(shù) y=的圖像經(jīng)過點A(-1a),過點AABx軸,垂足為點B,△AOB的面積為.

1)求a、k的值;

2)若一次函數(shù)y=mx+n圖像經(jīng)過點A和反比例函數(shù)圖像上另一點,且與x軸交于M點,求AM的值:

3)在(2)的條件下,如果以線段AM為一邊作等邊△AMN,頂點N在一次數(shù)函數(shù)y=bx上,則b= ______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校九年級有1200名學(xué)生,在體育考試前隨機抽取部分學(xué)生進(jìn)行跳繩測試,根據(jù)測試成績制作了下面兩個統(tǒng)計圖.請根據(jù)相關(guān)信息,解答下列問題:

(Ⅰ)本次參加跳繩測試的學(xué)生人數(shù)為___________,圖①中的值為___________;

(Ⅱ)求本次調(diào)查獲取的樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);

(Ⅲ)根據(jù)樣本數(shù)據(jù),估計該校九年級跳繩測試中得3分的學(xué)生約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某水果店計劃進(jìn)A,B兩種水果共140千克,這兩種水果的進(jìn)價和售價如表所示

進(jìn)價千克

售價千克

A種水果

5

8

B種水果

9

13

若該水果店購進(jìn)這兩種水果共花費1020元,求該水果店分別購進(jìn)A,B兩種水果各多少千克?

的基礎(chǔ)上,為了迎接春節(jié)的來臨,水果店老板決定把A種水果全部八折出售,B種水果全部降價出售,那么售完后共獲利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】位于重慶市匯北區(qū)的照母山森林公園乘承近自然生態(tài)理念營造森林風(fēng)景,雖由人作,宛自天開,凸顯自然風(fēng)骨與原生野趣.山中最為矚目的經(jīng)典當(dāng)屬攬星塔.登臨塔頂,可上九天邀月攬星,可鳥瞰新區(qū),領(lǐng)略附近樓宇的壯美;亦可遠(yuǎn)眺兩江勝景.登臨此塔,讓你有飄然若仙的聯(lián)想又有登高遠(yuǎn)眺,一覽眾山小的震撼,我校某數(shù)學(xué)興趣小組的同學(xué)準(zhǔn)備利用所學(xué)的三角函數(shù)知識估測該塔的高度,已知攬星塔AB位于坡度l:1的斜坡BC上,測量員從斜坡底端C處往前沿水平方向走了120m達(dá)到地面D處,此時測得攬星塔AB頂端A的仰角為37°,攬星塔底端B的仰角為30°,已知A、B、CD在同一平面內(nèi),則該塔AB的高度為(  )m,(結(jié)果保留整數(shù),參考數(shù)據(jù);sin37°≈0.60cos37°≈0.80,tan37°≈0.75,≈1.73

A.31B.40C.60D.136

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形中,于點,連接

1)如圖1,點上一點,連接,若,,求的長;

2)如圖2,若,延長延長線于點,以為斜邊做等腰直角,連接,求證:

查看答案和解析>>

同步練習(xí)冊答案