【題目】如圖,AB∥CD,點(diǎn)A,E,B,C不在同一條直線上.
(1)如圖1,求證:∠E+∠C﹣∠A=180°
(2)如圖2.直線FA,CP交于點(diǎn)P,且∠BAF=∠BAE,∠DCP=∠DCE.
①試探究∠E與∠P的數(shù)量關(guān)系;
②如圖3,延長(zhǎng)CE交PA于點(diǎn)Q,若AE∥PC,∠BAQ=α(0°<α<22.5°),則∠PQC的度數(shù)為 (用含α的式子表示)
【答案】(1)詳見(jiàn)解析;(2)①∠E=180°﹣3∠P,理由詳見(jiàn)解析;②180°﹣8α
【解析】
(1)如圖1,過(guò)E作EF∥AB,根據(jù)平行線的性質(zhì)即可得到結(jié)論;
(2)①設(shè)∠BAF=x,∠BAE=3x,∠DCP=y,∠DCE=3y,由(1)知,∠E=180°﹣∠C+∠A=180°﹣3(y﹣x),如圖2,過(guò)P作PG∥CD,根據(jù)平行線的性質(zhì)即可得到結(jié)論;
②如圖3,過(guò)P作PG∥CD,根據(jù)平行線的性質(zhì)即可得到結(jié)論.
解:(1)如圖1,過(guò)E作EF∥AB,
∵AB∥CD,
∴AB∥EF∥CD,
∴∠AEF=∠A,∠C+∠FEC=180°,
∴∠E=∠AEF+∠FEC=∠A+180°﹣∠C,
即∠E+∠C﹣∠A=180°;
(2)①∵∠BAF=∠BAE,∠DCP=∠DCE,
∴設(shè)∠BAF=x,∠BAE=3x,∠DCP=y,∠DCE=3y,
由(1)知,∠E=180°﹣∠C+∠A=180°﹣3(y﹣x),
如圖2,過(guò)P作PG∥CD,
∵AB∥CD,
∴AB∥PG,
∴∠GPA=∠BAF=x,∠GPC=∠PCD=y,
∴∠APC=y﹣x,
即∠E=180°﹣3∠P;
②如圖3,過(guò)P作PG∥CD,
∵∠BAQ=α,
∴∠QAE=2α,
∵AE∥PC,
∴∠QAE=∠APC=2α,
由①知,∠AEC=180°﹣3∠APC=180°﹣6α,
∴∠PQC=∠AEC﹣∠QAE=180°﹣6α﹣2α=180°﹣8α,
故答案為:180°﹣8α.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)不透明的口袋中裝有4個(gè)完全相同的小球,分別標(biāo)有數(shù)字1、2、3、4,另有一個(gè)可以自由旋轉(zhuǎn)的圓盤.被分成面積相等的3個(gè)扇形區(qū),分別標(biāo)有數(shù)字1、2、3(如圖所示).小穎和小亮想通過(guò)游戲來(lái)決定誰(shuí)代表學(xué)校參加歌詠比賽,游戲規(guī)則為:一人從口袋中摸出一個(gè)小球,另一個(gè)人轉(zhuǎn)動(dòng)圓盤,如果所摸球上的數(shù)字與圓盤上轉(zhuǎn)出數(shù)字之和小于4,那么小穎去;否則小亮去.
(1)用樹(shù)狀圖或列表法求出小穎參加比賽的概率;
(2)你認(rèn)為該游戲公平嗎?請(qǐng)說(shuō)明理由;若不公平,請(qǐng)修改該游戲規(guī)則,使游戲公平.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司推出了一種高效環(huán)保型洗滌用品,年初上市后,公司經(jīng)歷了從虧損到盈利的過(guò)程,下面的二次函數(shù)圖象(部分)刻畫了該公司年初以來(lái)累積利潤(rùn)s(萬(wàn)元)與銷售時(shí)間t(月)之間的關(guān)系(即前t個(gè)月的利潤(rùn)總和s與t之間的關(guān)系).
根據(jù)圖象提供的信息,解答下列問(wèn)題:
(1)由已知圖象上的三點(diǎn)坐標(biāo),求累積利潤(rùn)s(萬(wàn)元)與時(shí)間t(月)之間的函數(shù)關(guān)系式;
(2)求截止到幾月末公司累積利潤(rùn)可達(dá)到30萬(wàn)元;
(3)求第8個(gè)月公司所獲利潤(rùn)為多少萬(wàn)元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀理解:在以后你的學(xué)習(xí)中,我們會(huì)學(xué)習(xí)一個(gè)定理:直角三角形斜邊上的中線等于斜邊的一半,即:如圖1,在Rt△ABC中,∠ACB=90°,若點(diǎn)D是斜邊AB的中點(diǎn),則CD=AB.
靈活應(yīng)用:如圖2,△ABC中,∠BAC=90°,AB=6,AC=8,點(diǎn)D是BC的中點(diǎn),連接AD,將△ACD沿AD翻折得到△AED,連接BE,CE.
(1)填空:AD= ;
(2)求證:∠BEC=90°;
(3)求BE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b的圖象經(jīng)過(guò)點(diǎn)A(﹣2,6),且與x軸相交于點(diǎn)B,與正比例函數(shù)y=3x的圖象相交于點(diǎn)C,點(diǎn)C的橫坐標(biāo)為1.
(1)求k、b的值;
(2)若點(diǎn)D在y軸負(fù)半軸上,且滿足S△COD=S△BOC,求點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為⊙O的直徑,點(diǎn)E在⊙O上,C為的中點(diǎn),過(guò)點(diǎn)C作直線CD⊥AE于D,連接AC,BC.
(1)試判斷直線CD與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若AD=2,AC=,求AB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面直角坐標(biāo)系中有4個(gè)點(diǎn):A(0,2),B(﹣2,﹣2),C(﹣2,2),D(3,3).
(1)在正方形網(wǎng)格中畫出△ABC的外接圓⊙M,圓心M的坐標(biāo)是 ;
(2)若EF是⊙M的一條長(zhǎng)為4的弦,點(diǎn)G為弦EF的中點(diǎn),求DG的最大值;
(3)點(diǎn)P在直線MB上,若⊙M上存在一點(diǎn)Q,使得P、Q兩點(diǎn)間距離小于1,直接寫出點(diǎn)P橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形網(wǎng)格中,每一個(gè)小正方形的邊長(zhǎng)為1.△ABC的三個(gè)頂點(diǎn)都在格點(diǎn)上,A、C的坐標(biāo)分別是(﹣4,6),(﹣1,4).
(1)請(qǐng)?jiān)趫D中的網(wǎng)格平面內(nèi)建立平面直角坐標(biāo)系;
(2)請(qǐng)畫出△ABC向右平移6個(gè)單位的△A1B1C1,并寫出C1的坐標(biāo) ;
(3)請(qǐng)畫出△ABC關(guān)于原點(diǎn)O對(duì)稱的△A2B2C2 , 并寫出點(diǎn)C2的坐標(biāo) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角梯形ABCD中,DC∥AB,∠A=90°,AB=26cm,DC=18cm ,AD=4cm,動(dòng)點(diǎn)M以1cm/s的速度從點(diǎn)D向點(diǎn)C運(yùn)動(dòng),動(dòng)點(diǎn)N從點(diǎn)B以2cm/s的速度向點(diǎn)A運(yùn)動(dòng)點(diǎn)M、N同時(shí)出發(fā),當(dāng)其中一個(gè)動(dòng)點(diǎn)到達(dá)端點(diǎn)時(shí)停止運(yùn)動(dòng),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)動(dòng)點(diǎn)運(yùn)動(dòng)時(shí)間為t(s),四邊形ANMD的面積y(),y關(guān)于x的函數(shù)解析式并寫出定義域_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com