【題目】閱讀理解:在以后你的學(xué)習(xí)中,我們會(huì)學(xué)習(xí)一個(gè)定理:直角三角形斜邊上的中線等于斜邊的一半,即:如圖1,在RtABC中,∠ACB90°,若點(diǎn)D是斜邊AB的中點(diǎn),則CDAB

靈活應(yīng)用:如圖2,ABC中,∠BAC90°,AB6,AC8,點(diǎn)DBC的中點(diǎn),連接AD,將ACD沿AD翻折得到AED,連接BE,CE

1)填空:AD   

2)求證:∠BEC90°;

3)求BE

【答案】(1)5;(2)證明見(jiàn)解析;(3).

【解析】

1)利用勾股定理求出BC,再利用閱讀理解中的結(jié)論即可解決問(wèn)題;

2)由將△ACD沿AD翻折得到△AED,推出CDDEBD,推出∠DBE=∠DEB,∠DCE=∠DEC,由∠DBF+DEB+DEC+DCE180°,推出2DEB+2DEC180°,可得∠DEB+DEC90°;

3)如圖2中,延長(zhǎng)ADECH.由△ACB∽△HAC,,求出AHDH,再證明BE2DH即可解決問(wèn)題;

1)解:在Rt△ABC中,∵∠BAC90°AB6,AC8

BC10,

BDDC,

ADBC5

故答案為5;

2)證明:ACD沿AD翻折得到AED,

CDDEBD

∴∠DBEDEB,DCEDEC,

∵∠DBF+∠DEB+∠DEC+∠DCE180°,

∴2∠DEB+2∠DEC180°

∴∠DEB+∠DEC90°,

∴∠BEC90°

3)解:如圖2中,延長(zhǎng)ADECH

AEAE,HAEHAC,

AHEC

EHCH,

BDCD,

BE2DH,

DADC

∴∠ACBCAH,

∵∠CABAHC90°

∴△ACB∽△HAC,

,

AH

DHAHAD5,

BE2DH

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)CO,B在同一條直線上,∠AOB=90°,∠AOE=DOB,則下列結(jié)論:①∠EOD=90°;②∠COE=AOD;③∠AOE+DOC=180;④互余的角有4對(duì).其中正確的有(

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠B=∠C90°,EBC的中點(diǎn),DE平分∠ADC,求證:

1AE是∠DAB的平分線;

2AEDE

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正方形ABCD的邊長(zhǎng)為2,E是邊BC上的動(dòng)點(diǎn),BF⊥AE交CD于點(diǎn)F,垂足為點(diǎn)G,連接CG,下列說(shuō)法:①AG>GE;②AE=BF;③點(diǎn)G運(yùn)動(dòng)的路徑長(zhǎng)為π;④CG的最小值 ﹣1.其中正確的說(shuō)法有( )個(gè).

A.4
B.3
C.2
D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某機(jī)動(dòng)車輛出發(fā)前油箱中有油升,行駛?cè)舾尚r(shí)后,在途中加油站加油若干.油箱中余油量(升)與行駛時(shí)間(時(shí))之間的關(guān)系如圖,請(qǐng)根據(jù)圖中給出的信息,解決下列問(wèn)題.

(1)機(jī)動(dòng)車輛行駛了 小時(shí)后加油,中途加油________升.

(2)加油后油箱中的油最多可行駛多少小時(shí)?

(3)若加油站距目的地還有公里,機(jī)動(dòng)車每小時(shí)走公里,油箱中的油能否使車到達(dá)目的地?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖,四邊形中,,,,且,

試求:(1的度數(shù);(2)四邊形的面積(結(jié)果保留根號(hào));

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是規(guī)格為8×8的正方形網(wǎng)格,每個(gè)小方格都是邊長(zhǎng)為1的正方形.

(1)在網(wǎng)格中建立平面直角坐標(biāo)系,使A點(diǎn)坐標(biāo)為(24);

(2)在第二象限內(nèi)的格點(diǎn)(網(wǎng)格線的交點(diǎn))上畫一點(diǎn)C,使點(diǎn)C與線段AB組成一個(gè)以AB為底的等腰三角形,且腰長(zhǎng)是無(wú)理數(shù),則C點(diǎn)坐標(biāo)是_____

(3)畫出△ABC關(guān)于y軸對(duì)稱的△A′B′C′

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①所示,直線Lykx+5kx軸負(fù)半軸、y軸正半軸分別交于AB兩點(diǎn).

(1)當(dāng)OAOB時(shí),試確定直線L解析式;

(2)(1)的條件下,如圖②所示,設(shè)QAB延長(zhǎng)線上一點(diǎn),連接OQ,過(guò)A、B兩點(diǎn)分別作AMOQMBNOQN,若BN3,求MN的長(zhǎng);

(3)當(dāng)K取不同的值時(shí),點(diǎn)By軸正半軸上運(yùn)動(dòng),分別以OBAB為邊在第一、第二象限作等腰直角△OBF和等腰直角△ABE,連EFy軸于P點(diǎn),問(wèn)當(dāng)點(diǎn)By軸上運(yùn)動(dòng)時(shí),試猜想△ABP的面積是否改變,若不改變,請(qǐng)求出其值;若改變,請(qǐng)說(shuō)明理由.

(4)當(dāng)K取不同的值時(shí),點(diǎn)By軸正半軸上運(yùn)動(dòng),以AB為邊在第二象限作等腰直角△ABE,則動(dòng)點(diǎn)E在直線______上運(yùn)動(dòng).(直接寫出直線的表達(dá)式)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】填寫推理理由:

如圖,CDEF1=2,求證:∠3=ACB

證明:∵CDEF,

∴∠DCB=2           ),

∵∠1=2

∴∠DCB=1         ).

GDCB        ),

∴∠3=ACB      ).

查看答案和解析>>

同步練習(xí)冊(cè)答案