【題目】機器人“海寶”在某圓形區(qū)域表演“按指令行走”,如圖所示,“海寶”從圓心O出發(fā),先沿北偏西67.4°方向行走13米至點A處,再沿正南方向行走14米至點B處,最后沿正東方向行走至點C處,點B、C都在圓O上.
(1)求弦BC的長;
(2)求圓O的半徑長.
(本題參考數據:sin 67.4° =,cos 67.4°=,tan 67.4° =)
科目:初中數學 來源: 題型:
【題目】已知關于的一元二次方程x2-(k+2)x+k-1=0
(1)若方程的一個根為 -1,求的值和方程的另一個根;
(2)求證:不論取何值,該方程都有兩個不相等的實數根.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,中,,于,平分,且于,與相交于點,是邊的中點,連接與相交于點,下列結論正確的有( )個
①;②;③;④是等腰三角形;⑤.
A.個B.個C.個D.個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下面是某同學對多項式(x2﹣4x+2)(x2﹣4x+6)+4進行因式分解的過程
解:設x2﹣4x=y,
原式=(y+2)(y+6)+4。ǖ谝徊剑
=y2+8y+16 (第二步)
=(y+4)2(第三步)
=(x2﹣4x+4)2(第四步)
(1)該同學第二步到第三步運用了因式分解的 (填序號).
A.提取公因式 B.平方差公式
C.兩數和的完全平方公式 D.兩數差的完全平方公式
(2)該同學在第四步將y用所設中的x的代數式代換,得到因式分解的最后結果.這個結果是否分解到最后? .(填“是”或“否”)如果否,直接寫出最后的結果 .
(3)請你模仿以上方法嘗試對多項式(x2﹣2x)(x2﹣2x+2)+1進行因式分解.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】紅星公司生產的某種時令商品每件成本為20元,經過市場調研發(fā)現,這種商品在未來40天內的 日銷售量(件)與時間(天)的關系如下表:
時間(天) | 1 | 3 | 6 | 10 | 36 | … |
日銷售量(件) | 94 | 90 | 84 | 76 | 24 | … |
未來40天內,前20天每天的價格y1(元/件)與t時間(天)的函數關系式為:y1=t+25(1≤t≤20且t為整數);后20天每天的價格y2(原/件)與t時間(天)的函數關系式為:y2=—t+40(21≤t≤40且t為整數).下面我們來研究 這種商品的有關問題.
(1)認真分析上表中的數量關系,利用學過的一次函數、二次函數 、反比例函數的知識確定一個滿足這些數據之間的函數關系式;
(2)請預測未來40天中那一天的銷售利潤最大,最大日銷售利潤是多少?
(3)在實際銷售的前20天中該公司決定每銷售一件商品就捐贈a元利潤(a<4)給希望工程,公司通過銷售記錄發(fā)現,前20天中,每天扣除捐贈后的日銷售利潤隨時間t的增大而增大,求a的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知、兩地之間有一條270千米的公路,甲、乙兩車同時出發(fā),甲車以每小時60千米/時的速度沿此公路從地勻速開往地,乙車從地沿此公路勻速開往地,兩車分別到達目的地后停止甲、乙兩車相距的路程(千米)與甲車的行駛時間(時)之間的函數關系如圖所示:
(1)乙年的速度為______千米/時,_____,______.
(2)求甲、乙兩車相遇后與之間的函數關系式,并寫出相應的自變量的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,直線l1:y=﹣2x+6與坐標軸交于A,B兩點,直線l2:y=kx+2(k>0)與坐標軸交于點C,D,直線l1,l2與相交于點E.
(1)當k=2時,求兩條直線與x軸圍成的△BDE的面積;
(2)點P(a,b)在直線l2:y=kx+2(k>0)上,且點P在第二象限.當四邊形OBEC的面積為時.
①求k的值;
②若m=a+b,求m的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正六邊形ABCDEF中,P、Q兩點分別為△ACF、△CEF的內心.若AF=2,則PQ的長度為何?( )
A. 1 B. 2 C. 2﹣2 D. 4﹣2
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com