【題目】在平面直角坐標(biāo)系中,直線l1:y=﹣2x+6與坐標(biāo)軸交于A,B兩點(diǎn),直線l2:y=kx+2(k>0)與坐標(biāo)軸交于點(diǎn)C,D,直線l1,l2與相交于點(diǎn)E.
(1)當(dāng)k=2時(shí),求兩條直線與x軸圍成的△BDE的面積;
(2)點(diǎn)P(a,b)在直線l2:y=kx+2(k>0)上,且點(diǎn)P在第二象限.當(dāng)四邊形OBEC的面積為時(shí).
①求k的值;
②若m=a+b,求m的取值范圍.
【答案】(1)△BDE的面積=8;(2)①k=4;②﹣<m<2.
【解析】
(1)由直線l1的解析式可得點(diǎn)A、點(diǎn)B的坐標(biāo),當(dāng)k=2時(shí),由直線l2的解析式可得點(diǎn)C、點(diǎn)D坐標(biāo),聯(lián)立直線l1與直線l2的解析式可得點(diǎn)E坐標(biāo),根據(jù)三角形面積公式求解即可;
(2)①連接OE.設(shè)E(n,﹣2n+6),由S四邊形OBEC=S△EOC+S△EOB可求得n的值,求出點(diǎn)E坐標(biāo),把點(diǎn)E代入y=kx+2中求出k值即可;②由直線y=4x+2的表達(dá)式可確定點(diǎn)D坐標(biāo),根據(jù)點(diǎn)P(a,b)在直線y=4x+2上,且點(diǎn)P在第二象限可得及的取值范圍,由m=a+b可確定m的取值范圍.
解:(1)∵直線l1:y=﹣2x+6與坐標(biāo)軸交于A,B兩點(diǎn),
∴當(dāng)y=0時(shí),得x=3,當(dāng)x=0時(shí),y=6;
∴A(0,6)B(3,0);
當(dāng)k=2時(shí),直線l2:y=2x+2(k≠0),
∴C(0,2),D(﹣1,0)
解得,
∴E(1,4),
,點(diǎn)E到x軸的距離為4,
∴△BDE的面積=×4×4=8.
(2)①連接OE.設(shè)E(n,﹣2n+6),
∵S四邊形OBEC=S△EOC+S△EOB,
∴×2×n+×3×(﹣2n+6)=,
解得n=,
∴E(,),
把點(diǎn)E代入y=kx+2中,=k+2,
解得k=4.
②∵直線y=4x+2交x軸于D,
∴D(﹣,0),
∵P(a,b)在第二象限,即在線段CD上,
∴﹣<a<0,
∵點(diǎn)P(a,b)在直線y=kx+2上
∴b=4a+2,
∴m=a+b=5a+2,
∴﹣<m<2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從6 月30日起,某縣普降特大暴雨,遭受了短期降水量最大、內(nèi)河水位歷史最高、防汛壓力最重的百年不遇的災(zāi)害.洪水無情人有情,該縣實(shí)驗(yàn)學(xué)校9 (1)班計(jì)劃用捐款從商店購買同品牌的雨衣和雨傘送往抗洪前線.已知購買一件雨衣比購買一把雨傘多用元,若用元購買雨衣和用元購買雨傘,則購買雨衣的件數(shù)是購買雨傘把數(shù)的一半.
(1)求購買該品牌的一件雨衣、一把雨傘各需要多少元.
(2)經(jīng)商談,商店給予該班級(jí)購買一件該品牌的雨衣贈(zèng)送把該品牌的雨傘的優(yōu)惠, 如果該班需要購買雨傘個(gè)數(shù)是雨衣件數(shù)的倍還多個(gè),且該班購買雨衣和雨傘的總費(fèi)用不超過元,那么該班最多可以購買多少件該品牌的雨衣?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,, 點(diǎn)在邊上,點(diǎn)到點(diǎn)的距離與點(diǎn)到點(diǎn)的距離相等.
(1)利用尺規(guī)作圖作出點(diǎn),不寫作法但保留作圖痕跡:
(2)連接,若的底邊長(zhǎng)為,周長(zhǎng)為,求的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】機(jī)器人“海寶”在某圓形區(qū)域表演“按指令行走”,如圖所示,“海寶”從圓心O出發(fā),先沿北偏西67.4°方向行走13米至點(diǎn)A處,再沿正南方向行走14米至點(diǎn)B處,最后沿正東方向行走至點(diǎn)C處,點(diǎn)B、C都在圓O上.
(1)求弦BC的長(zhǎng);
(2)求圓O的半徑長(zhǎng).
(本題參考數(shù)據(jù):sin 67.4° =,cos 67.4°=,tan 67.4° =)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是圓的直徑,,點(diǎn)是圓上一動(dòng)點(diǎn)(與,不重合),的平分線交圓于.
判斷的形狀,并證明你的結(jié)論;
若是的內(nèi)心,當(dāng)點(diǎn)運(yùn)動(dòng)時(shí),、中是否存在長(zhǎng)度保持不變的線段?如果存在,請(qǐng)指出并求其長(zhǎng)度;如果不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,函數(shù) y kx 與 y 的圖象交于 A、B 兩點(diǎn),過 A 作 y 軸的垂線,交函數(shù)的圖象于點(diǎn) C,連接 BC,則△ABC 的面積為( )
A. 2 B. 4 C. 6 D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線l1:y1=x+b經(jīng)過點(diǎn)A(﹣5,0),交y軸于點(diǎn)B,直線l2:y2=﹣2x﹣4與直線l1:y1=x+b交于點(diǎn)C,交y軸于點(diǎn)D.
(1)求b的值;
(2)求△BCD的面積;
(3)當(dāng)0≤y2<y1時(shí),則x的取值范圍是 .(直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)學(xué)活動(dòng)課上,李老師讓同學(xué)們?cè)囍媒浅咂椒?/span> (如圖所示),有兩組.
同學(xué)設(shè)計(jì)了如下方案:
方案①:將角尺的直角頂點(diǎn)介于射線之間,移動(dòng)角尺使角尺兩邊相同的刻度位于上,且交點(diǎn)分別為,即,過角尺頂點(diǎn)的射線就是的平分線.
方案②:在邊上分別截取,將角尺的直角頂點(diǎn)介于射線之間,移動(dòng)角尺使角尺兩邊相同的刻度與點(diǎn)重合,即,過角尺頂點(diǎn)的射線就是的平分線.請(qǐng)分別說明方案①與方案②是否可行?若可行,請(qǐng)證明; 若不可行,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com