【題目】如圖,中,,于,平分,且于,與相交于點(diǎn),是邊的中點(diǎn),連接與相交于點(diǎn),下列結(jié)論正確的有( )個(gè)
①;②;③;④是等腰三角形;⑤.
A.個(gè)B.個(gè)C.個(gè)D.個(gè)
【答案】B
【解析】
只要證明△BDF≌△CDA,△BAC是等腰三角形,∠DGF=∠DFG=67.5°,即可判斷①②③④正確,作GM⊥BD于M,只要證明GH<DG即可判斷⑤錯(cuò)誤.
∵CD⊥AB,BE⊥AC,
∴∠BDC=∠ADC=∠AEB=90°,
∴∠A+∠ABE=90°,∠ABE+∠DFB=90°,
∴∠A=∠DFB,
∵∠ABC=45°,∠BDC=90°,
∴∠DCB=90°45°=45°=∠DBC,
∴BD=DC,
在△BDF和△CDA中
,
∴△BDF≌△CDA(AAS),
∴BF=AC,故①正確.
∵∠ABE=∠EBC=22.5°,BE⊥AC,
∴∠A=∠BCA=67.5°,故③正確,
∴BA=BC,
∵BE⊥AC,
∴AE=EC=AC=BF,故②正確,
∵BE平分∠ABC,∠ABC=45°,
∴∠ABE=∠CBE=22.5°,
∵∠BDF=∠BHG=90°,
∴∠BGH=∠BFD=67.5°,
∴∠DGF=∠DFG=67.5°,
∴DG=DF,故④正確.
作GM⊥AB于M.
∵∠GBM=∠GBH,GH⊥BC,
∴GH=GM<DG,
∴S△DGB>S△GHB,
∵S△ABE=S△BCE,
∴S四邊形ADGE<S四邊形GHCE.故⑤錯(cuò)誤,
∴①②③④正確,
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,中, , 且于交的延長線于.
(1)求證:
(2)如果連結(jié),請(qǐng)寫出與的關(guān)系并證明
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的網(wǎng)格中有四條線段AB、CD、EF、GH(線段端點(diǎn)在格點(diǎn)上),
⑴選取其中三條線段,使得這三條線段能圍成一個(gè)直角三角形.
答:選取的三條線段為 .
⑵只變動(dòng)其中兩條線段的位置,在原圖中畫出一個(gè)滿足上題的直角三角形(頂點(diǎn)仍在格點(diǎn),并標(biāo)上必要的字母).
答:畫出的直角三角形為△ .
⑶所畫直角三角形的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1是一個(gè)長為2m、寬為2n的長方形,沿圖中虛線用剪刀平均分成4個(gè)小長方形,然后按圖2的形狀拼成一個(gè)正方形.
(1)圖2中陰影部分的面積請(qǐng)用兩種方法表示:① ;②_________.
(2)觀察圖2,請(qǐng)你寫出式子(m+n)2,(m-n)2,mn之間的等量關(guān)系: ;
(3)若x+y=-6,xy=2.75,求x-y的值.
(4)觀察圖3,你能得到怎樣的代數(shù)恒等式?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=2x+3與x軸相交于點(diǎn)A,與y軸相交于點(diǎn)B.
(1)求A,B兩點(diǎn)的坐標(biāo);
(2)過B點(diǎn)作直線BP與x軸相交于P,且使OP=2OA, 求ΔABP的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程.
(1)若該方程有實(shí)數(shù)根,求a的取值范圍;
(2)若該方程一個(gè)根為-1,求方程的另一個(gè)根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1所示,將一個(gè)邊長為2的正方形ABCD和一個(gè)長為2、寬為1的長方形CEFD拼在一起,構(gòu)成一個(gè)大的長方形ABEF.現(xiàn)將小長方形CEFD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)至,旋轉(zhuǎn)角為.
(1)當(dāng)點(diǎn)恰好落在EF邊上時(shí),求旋轉(zhuǎn)角的值;
(2)如圖2,G為BC的中點(diǎn),且00<<900,求證:;
(3)小長方形CEFD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)一周的過程中,與能否全等?若能,直接寫出旋轉(zhuǎn)角的值;若不能,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
學(xué)習(xí)了三角形全等的判定方法(即“SAS”“ASA”“AAS”“SSS”)和直角三角形全等的判定方法(即“HL”)后,小聰繼續(xù)對(duì)“兩個(gè)三角形滿足兩邊和其中一邊的對(duì)角對(duì)應(yīng)相等”的情形進(jìn)行研究
小聰將命題用符號(hào)語言表示為:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E.
小聰?shù)奶骄糠椒ㄊ菍?duì)∠B分為“直角、鈍角、銳角”三種情況進(jìn)行探究.
第一種情況:當(dāng)∠B 是直角時(shí),如圖1,△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E=90°,根據(jù)“HL”定理,可以知道Rt△ABC≌Rt△DEF.
第二種情況:當(dāng)∠B 是銳角時(shí),如圖2,BC=EF,∠B=∠E<90°,在射線EM上有點(diǎn)D,使DF=AC,畫出符合條件的點(diǎn)D,則△ABC和△DEF的關(guān)系是 ;
A.全等 B.不全等 C.不一定全等
第三種情況:當(dāng)∠B是鈍角時(shí),如圖3,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E>90°.過點(diǎn)C作AB邊的垂線交AB延長線于點(diǎn)M;同理過點(diǎn)F作DE邊的垂線交DE延長線于N,根據(jù)“ASA”,可以知道△CBM≌△FEN,請(qǐng)補(bǔ)全圖形,進(jìn)而證出△ABC≌△DEF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊿中,,點(diǎn)分別在 邊上,且, .
⑴.求證:⊿是等腰三角形;
⑵.當(dāng) 時(shí),求的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com