【題目】如圖1所示,將一個(gè)邊長(zhǎng)為2的正方形ABCD和一個(gè)長(zhǎng)為2、寬為1的長(zhǎng)方形CEFD拼在一起,構(gòu)成一個(gè)大的長(zhǎng)方形ABEF.現(xiàn)將小長(zhǎng)方形CEFD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)至,旋轉(zhuǎn)角為.

1)當(dāng)點(diǎn)恰好落在EF邊上時(shí),求旋轉(zhuǎn)角的值;

2)如圖2,GBC的中點(diǎn),且00900,求證:

3)小長(zhǎng)方形CEFD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)一周的過程中,能否全等?若能,直接寫出旋轉(zhuǎn)角的值;若不能,說明理由.

【答案】1∠α=3002)見解析(3)旋轉(zhuǎn)角a的值為13503150時(shí),△BCD′∠DCD′全等

【解析】

試題(1)根據(jù)旋轉(zhuǎn)的性質(zhì)得CE=CH=1,即可得出結(jié)論;

2)由GBC中點(diǎn)可得CG=CE,根據(jù)旋轉(zhuǎn)的性質(zhì)得∠D′CE′=∠DCE=90°,CE=CE′CE,則∠GCD′=∠DCE′=90°+α,然后根據(jù)“SAS”可判斷△GCD′≌△E′CD,則GD′=E′D;

3)根據(jù)正方形的性質(zhì)得CB=CD,而CD=CD′,則△BCD′△DCD′為腰相等的兩等腰三角形,當(dāng)兩頂角相等時(shí)它們?nèi),?dāng)△BCD′△DCD′為鈍角三角形時(shí),可計(jì)算出α=135°,當(dāng)△BCD′△DCD′為銳角三角形時(shí),可計(jì)算得到α=315°

試題解析:(1

長(zhǎng)方形CEFD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)至CE′F′D′∴CE=CH=1,∴△CEH為等腰直角三角形,∴∠ECH=45°,∴∠α=30°

2)證明:∵GBC中點(diǎn),∴CG=1,∴CG=CE長(zhǎng)方形CEFD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)至CE′F′D′,∴∠D′CE′=∠DCE=90°,CE=CE′=CG,∴∠GCD′=∠DCE′=90°+α,在△GCD′△E′CD中,∵CD′=CD,∠GCD=∠DCE′,CG=CE′∴△GCD′≌△E′CDSAS),∴GD′=E′D;

3)解:能.

理由如下:

四邊形ABCD為正方形,∴CB=CD,∵CD′=CD′∴△BCD′△DCD′為腰相等的兩等腰三角形,當(dāng)∠BCD′=∠DCD′時(shí),△BCD′≌△DCD′,當(dāng)△BCD′△DCD′為鈍角三角形時(shí),則旋轉(zhuǎn)角α=360°-90°÷2=135°,當(dāng)△BCD′△DCD′為銳角三角形時(shí),∠BCD′=∠DCD′=∠BCD=45°,則α=360°﹣90°÷2=315°,即旋轉(zhuǎn)角a的值為135°315°時(shí),△BCD′△DCD′全等.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是等邊三角形,點(diǎn)在邊上(點(diǎn)D不與重合),點(diǎn)是射線上的一個(gè)動(dòng)點(diǎn)(點(diǎn)不與點(diǎn)重合),連接,以為邊作作等邊三角形,連接.

1)如圖1,當(dāng)的延長(zhǎng)線與的延長(zhǎng)線相交,且在直線的同側(cè)時(shí),過點(diǎn),于點(diǎn),求證:;

2)如圖2,當(dāng)反向延長(zhǎng)線與的反向延長(zhǎng)線相交,且在直線的同側(cè)時(shí),求證:;

3)如圖3, 當(dāng)反向延長(zhǎng)線與線段相交,且在直線的異側(cè)時(shí),猜想、之間的等量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=x2﹣2x﹣3.

(1)該二次函數(shù)圖象的對(duì)稱軸為 ;

(2)判斷該函數(shù)與x軸交點(diǎn)的個(gè)數(shù),并說明理由;

(3)下列說法正確的是 (填寫所有正確說法的序號(hào))

①頂點(diǎn)坐標(biāo)為(1,﹣4);

②當(dāng)y>0時(shí),﹣1<x<3;

③在同一平面直角坐標(biāo)系內(nèi),該函數(shù)圖象與函數(shù)y=﹣x2+2x+3的圖象關(guān)于x軸對(duì)稱.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,,平分,且,與相交于點(diǎn),邊的中點(diǎn),連接相交于點(diǎn),下列結(jié)論正確的有( )個(gè)

;②;③;④是等腰三角形;⑤.

A.個(gè)B.個(gè)C.個(gè)D.個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形中,,,,則 )°

A.15B.18C.20D.25

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△AEC△DFB中,∠E∠F,點(diǎn)A,B,C,D在同一直線上,有如下三個(gè)關(guān)系式:①AE∥DF,②ABCD,③CEBF.

(1)請(qǐng)用其中兩個(gè)關(guān)系式作為條件,另一個(gè)作為結(jié)論,寫出你認(rèn)為正確的所有命題(用序號(hào)寫出命題書寫形式:如果,那么”)

(2)選擇(1)中你寫出的一個(gè)命題,說明它正確的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,直線分別交軸、軸于點(diǎn)點(diǎn);點(diǎn)在直線的右側(cè),且

1)若為直角三角形,求點(diǎn)的坐標(biāo);

2)如圖2,若點(diǎn)在第四象限,且,軸交于點(diǎn)軸交于點(diǎn),連接,求證:兩個(gè)外角平分線的交點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】京張高鐵是2022年北京冬奧會(huì)的重要交通保障設(shè)施.如圖,京張高鐵起自北京北站,途經(jīng)清河、沙河、昌平等站,終點(diǎn)站為張家口南站,全長(zhǎng)174千米.根據(jù)資料顯示,京張高鐵在某次測(cè)試中的平均時(shí)速是現(xiàn)運(yùn)行的京張鐵路某字頭列車平均時(shí)速的6倍,全程行駛時(shí)間減少了122分鐘,且每站(不計(jì)起始站和終點(diǎn)站)?康钠骄鶗r(shí)間也減少了3.5分鐘.請(qǐng)求出此次測(cè)試中京張高鐵的平均時(shí)速是多少.

(注:平均時(shí)速的測(cè)算公式為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖l、圖2均為8×6的方格紙(每個(gè)小正方形的邊長(zhǎng)均為1),在方格紙中各有一條線段AB,其中點(diǎn)A、B均在小正方形的頂點(diǎn)上,請(qǐng)按要求畫圖:

(1)在圖l中畫一直角ABC,使得tan∠BAC=,點(diǎn)C在小正方形的頂點(diǎn)上;

(2)在圖2中畫一個(gè)ABEF,使得ABEF的面積為圖1中ABC面積的4倍,點(diǎn)E、F在小正方形的頂點(diǎn)上.

查看答案和解析>>

同步練習(xí)冊(cè)答案