【題目】如圖,在平面直角坐標系中,拋物線y=﹣x2+mx(m>0且m≠1)與x軸交于原點O和點A,點B的坐標為(1,﹣1),連結AB,將線段AB繞點A順時針旋轉90°得到線段AC,連結OB、OC.
(1)求點A的橫坐標.(用含m的代數(shù)式表示).
(2)若m=3,則點C的坐標為 .
(3)當點C與拋物線的頂點重合時,求四邊形ABOC的面積.
(4)結合m的取值范圍,直接寫出∠AOC的度數(shù).
【答案】
(1)
解:∵拋物線y=﹣x2+mx與x軸交于點A,
∴﹣x2+mx=0,解得x=0或m,
∴點A的橫坐標為m.
(2)(2,2)
(3)
解:如圖2中,作BD⊥OA于D,CE⊥OA于E.
由(2)可知△ADB≌△CEA,
∴BD=AE,AD=CE
∵B(1,﹣1),A(m,0),
∴OE=m﹣1,CE=m﹣1,
∴C(m﹣1,m﹣1),
∵點C(m﹣1,m﹣1)與拋物線的頂點( , )重合,
∴m﹣1= ,
∴m=2.
∴S四邊形ABOC= ×2×(1+1)=2.
(4)
解:①如圖3中,當O<m<1時,∠AOC=135°,理由如下:
作CN⊥x軸于N,BM⊥x軸于M.
∵∠NAC+∠BAM=90°,∠BAM+∠ABM=90°,
∴∠NAC=∠ABM,
在△ACN和△BAM中,
,
∴△ACN≌△BAM,
∴BM=AN=1,CN=AM,
∴AN=OM=1,
∴ON=CN,
∴∠NOC=∠NC0=45°,
∴∠AOC=135°
②當m>1時,∠AOC=45°,理由如下:
作CN⊥x軸于N,BM⊥x軸于M,∵△ACN≌△BAM,
∴BM=AN=OM=1,AM=CN,
∴ON=AM=CN,∵∠ONC=90°,
∴∠COA=45°.
【解析】解:(2)如圖1中,∵m=3,
∴點A坐標為(3,0),
作BD⊥OA于D,CE⊥OA于E.
∵∠ADB=∠AEC=∠BAC=90°,
∴∠DAB+∠DBA=90°,∠DAB+∠CAE=90°,
∴∠CAE=∠DBA,
在△ADB和△CEA中,
,
∴△ADB≌△CEA,
∴BD=AE=1,AD=CE=2,
∴點C坐標(2,2).
【考點精析】本題主要考查了二次函數(shù)的圖象和二次函數(shù)的性質(zhì)的相關知識點,需要掌握二次函數(shù)圖像關鍵點:1、開口方向2、對稱軸 3、頂點 4、與x軸交點 5、與y軸交點;增減性:當a>0時,對稱軸左邊,y隨x增大而減;對稱軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小才能正確解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線l1的最高點為P(3,4),且經(jīng)過點A(0,1),將拋物線l1繞原點O旋轉180°后,得到拋物線l2 , 求l2的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題背景:
如圖1,在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,EF分別是BC,CD上的點,且∠EAF=60°,探究圖中線段BE,EF,FD之間的數(shù)量關系.
小王同學探究此問題的方法是延長FD到點G,使DG=BE,連結AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,可得出結論,他的結論應是__________________;
探索延伸:
如圖2,若在四邊形ABCD中,AB=AD,∠B+∠D=180°,E,F分別是BC,CD上的點,且∠EAF=∠BAD,上述結論是否仍然成立,并說明理由;
結論應用:
如圖3,在某次軍事演習中,艦艇甲在指揮中心(O處)北偏西30°的A處,艦艇乙在指揮中心南偏東70°的B處,并且兩艦艇到指揮中心的距離相等.接到行動指令后,艦艇甲向正東方向以50海里/小時的速度前進,艦艇乙沿北偏東50°的方向以60海里/小時的速度前進,1.5小時后,指揮中心觀測到甲、乙兩艦艇分別到達E,F處,且兩艦艇與指揮中心O之間夾角∠EOF=70°,試求此時兩艦艇之間的距離.
能力提高:
如圖4,等腰直角三角形ABC中,∠BAC=90°,AB=AC,點M,N在邊BC上,且∠MAN=45°.若BM=5,CN=12,則MN的長為_________.(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AD=AE,∠ADC=∠AEB,BE與CD相交于點O.
(1)在不添加輔助線的情況下,由已知條件可以得出許多結論,例如:△ABE≌△ACD、∠DOB=∠EOC、∠DOE=∠BOC等.請你動動腦筋,再寫出3個結論
(所寫結論不能與題中舉例相同且只要寫出3個即可)
① ,② ,③ ,
(2)請你從自己寫出的結論中,選取一個說明其成立的理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,過邊長為1的等邊△ABC的邊AB上一點P,作PE⊥AC于E,Q為BC延長線上一點,當PA=CQ時,連PQ交AC邊于D,則DE的長為( )
A. B. C. D. 不能確定
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學為了綠化校園,計劃購買一批榕樹和香樟樹,經(jīng)市場調(diào)查,榕樹的單價比香樟樹少20元,購買3棵榕樹和2棵香樟樹共需340元.
(1)榕樹和香樟樹的單價各是多少?
(2)根據(jù)學校實際情況,需購買兩種樹苗共150棵,總費用不超過10840元,且購買香樟樹的棵數(shù)不少于榕樹的1.5倍,請你算算該校本次購買榕樹和香樟樹共有哪幾種方案.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)學興趣小組在活動時,老師提出了這樣一個問題:如圖1,在△ABC中,AB=8,AC=6,D是BC的中點,求BC邊上的中線AD的取值范圍.
小明在組內(nèi)經(jīng)過合作交流,得到了如下的解決方法:延長AD到E,使DE=AD,再證明“△ADC≌△EDB”.
(1)探究得出AD的取值范圍是_____;
(2)(問題解決)如圖2,△ABC中,∠B=90°,AB=2,AD是△ABC的中線,CE⊥BC,CE=4,且∠ADE=90°,求AE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】飛機著陸后滑行的距離S(單位:m)關于滑行時間t(單位:s)的函數(shù)解析式是:S=60t﹣1.5t2
(1)直接指出飛機著陸時的速度;
(2)直接指出t的取值范圍;
(3)畫出函數(shù)S的圖象并指出飛機著陸后滑行多遠才能停下來?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com