【題目】新定義:[a,bc]為二次函數(shù)y=ax2+bx+ea≠0,ab,c為實(shí)數(shù))的圖象數(shù),如:y=-x2+2x+3圖象數(shù)[-12,3]

1)二次函數(shù)y=x2-x-1圖象數(shù)

2)若圖象數(shù)[mm+1,m+1]的二次函數(shù)的圖象與x軸只有一個交點(diǎn),求m的值.

【答案】1[,11];(2m11,m2.

【解析】

1)利用“圖象數(shù)”的定義求解;

2)根據(jù)新定義得到二次函數(shù)的解析式為ymx2+(m1xm1,然后根據(jù)判別式的意義得到△=(m124mm1)=0,從而解m的方程即可.

解:(1)二次函數(shù)y=x2-x-1的“圖象數(shù)”為[,1,1]

故答案為:[,1,1]

2)二次函數(shù)的解析式為ymx2+(m1xm1,

根據(jù)題意得:△=(m124mm1)=0,

解得:m11,m2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線y=ax2+2ax﹣3a(a>0)與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)).

(1)求拋物線的對稱軸及線段AB的長;

(2)拋物線的頂點(diǎn)為P,若∠APB=120°,求頂點(diǎn)P的坐標(biāo)及a的值;

(3)若在拋物線上存在一點(diǎn)N,使得∠ANB=90°,結(jié)合圖象,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(背景知識)

數(shù)軸是初中數(shù)學(xué)的一個重要工具,利用數(shù)軸可以將數(shù)與形完美結(jié)合.研究數(shù)軸我們發(fā)現(xiàn)有許多重要的規(guī)律:

例如,若數(shù)軸上點(diǎn)、點(diǎn)表示的數(shù)分別為、,則、兩點(diǎn)之間的距離,線段的中點(diǎn)表示的數(shù)為

(問題情境)

在數(shù)軸上,點(diǎn)表示的數(shù)為-20,點(diǎn)表示的數(shù)為10,動點(diǎn)從點(diǎn)出發(fā)沿?cái)?shù)軸正方向運(yùn)動,同時,動點(diǎn)也從點(diǎn)出發(fā)沿?cái)?shù)軸負(fù)方向運(yùn)動,已知運(yùn)動到4秒鐘時,兩點(diǎn)相遇,且動點(diǎn)、運(yùn)動的速度之比是(速度單位:單位長度/秒).

備用圖

(綜合運(yùn)用)

1)點(diǎn)的運(yùn)動速度為______單位長度/秒,點(diǎn)的運(yùn)動速度為______單位長度/秒;

2)當(dāng)時,求運(yùn)動時間;

3)若點(diǎn)、在相遇后繼續(xù)以原來的速度在數(shù)軸上運(yùn)動,但運(yùn)動的方向不限,我們發(fā)現(xiàn):隨著動點(diǎn)、的運(yùn)動,線段的中點(diǎn)也隨著運(yùn)動.問點(diǎn)能否與原點(diǎn)重合?若能,求出從、相遇起經(jīng)過的運(yùn)動時間,并直接寫出點(diǎn)的運(yùn)動方向和運(yùn)動速度;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:

某些代數(shù)恒等式可用一些卡片拼成的圖形的面積來解釋.例如,圖①可以解釋,因此,我們可以利用這種方法對某些多項(xiàng)式進(jìn)行因式分解.

根據(jù)閱讀材料回答下列問題:

1)如圖②所表示的因式分解的恒等式是________________________.

2)現(xiàn)有足夠多的正方形和長方形卡片(如圖③),試畫出一個用若干張1號卡片、2號卡片和3號卡片拼成的長方形(每兩張卡片之間既不重疊,也無空隙),使該長方形的面積為,并利用你畫的長方形的面積對進(jìn)行因式分解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,我們把對角線互相垂直的四邊形叫做垂美四邊形.

(l)概念理解:如圖2,在四邊形ABCD中,AB=AD,CB=CD,問四邊形ABCD是垂美四邊形嗎?請說明理由.

(2)性質(zhì)探宄:試探索垂美四邊形ABCD兩組對邊AB,CD與BC,AD之間的數(shù)量關(guān)系.

猜想結(jié)論:(要求用文字語言敘述)

寫出證明過程(先畫出圖形,寫出已知、求證)

(3)問題解決:如圖3,分別以Rt△ACB的直角邊AC和斜邊AB為邊向外作正方形ACFG和正方形ABDE,連接CE,BG,GE,已知AC=4,AB=5,求GE長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,甲、乙兩座建筑物的水平距離,從甲的頂部處測得乙的頂部處的俯角為48°,測得底部處的俯角為58°,求乙建筑物的高度.(參考數(shù)據(jù):,,,.結(jié)果取整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著粵港澳大灣區(qū)建設(shè)的加速推進(jìn),廣東省正加速布局以5G等為代表的戰(zhàn)略性新興產(chǎn)業(yè),據(jù)統(tǒng)計(jì),目前廣東5G基站的數(shù)量約1.5萬座,計(jì)劃到2020年底,全省5G基站數(shù)是目前的4倍,到2022年底,全省5G基站數(shù)量將達(dá)到17.34萬座。

1)計(jì)劃到2020年底,全省5G基站的數(shù)量是多少萬座?;

2)按照計(jì)劃,求2020年底到2022年底,全省5G基站數(shù)量的年平均增長率。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD為平行四邊形,的平分線AECD于點(diǎn)FBC的延長線于點(diǎn)E

1)求證:

2)連接BF、AC、DE,當(dāng)時,求證:四邊形ACED是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)雙曲線與直線交于,兩點(diǎn)(點(diǎn)在第三象限),將雙曲線在第一象限的一支沿射線的方向平移,使其經(jīng)過點(diǎn),將雙曲線在第三象限的一支沿射線的方向平移,使其經(jīng)過點(diǎn),平移后的兩條曲線相交于點(diǎn)兩點(diǎn),此時我們稱平移后的兩條曲線所圍部分(如圖中陰影部分)為雙曲線的”,為雙曲線的眸徑.當(dāng)雙曲線的眸徑為6時,的值為__________.

查看答案和解析>>

同步練習(xí)冊答案