【題目】如圖,現(xiàn)有一張邊長(zhǎng)為8的正方形紙片,點(diǎn)為邊上的一點(diǎn)(不與點(diǎn)、點(diǎn)重合),將正方形紙片折疊,使點(diǎn)落在處,點(diǎn)落在處,交于,折痕為,連結(jié)、.
(1)求證:;
(2)求證:;
(3)當(dāng)時(shí),求的長(zhǎng).
【答案】(1)證明見(jiàn)解析;(2)證明見(jiàn)解析;(3)PH=.
【解析】
(1)根據(jù)翻折變換的性質(zhì)得出∠PBC=∠BPH,進(jìn)而利用平行線(xiàn)的性質(zhì)得出∠APB=∠PBC即可得出答案;
(2)首先過(guò)B作BQ⊥PH,垂足為Q,易證得△ABP≌△QBP,進(jìn)而得出△BCH≌△BQH,即可得出AP+HC=PH.
(3)首先設(shè)AE=x,則EP=8-x,由勾股定理可得:在Rt△AEP中,AE2+AP2=PE2,即可得方程:x2+22=(8-x)2,即可求得答案AE的長(zhǎng),易證得△DPH∽△AEP,然后由相似三角形的對(duì)應(yīng)邊成比例,求得答案.
(1)證明:∵PE=BE,
∴∠EPB=∠EBP,
又∵∠EPH=∠EBC=90°,
∴∠EPH-∠EPB=∠EBC-∠EBP.
即∠BPH=∠PBC.
又∵四邊形ABCD為正方形
∴AD∥BC,
∴∠APB=∠PBC.
∴∠APB=∠BPH.
(2)證明:過(guò)B作BQ⊥PH,垂足為Q,
由(1)知,∠APB=∠BPH,
在△ABP與△QBP中,
,
∴△ABP≌△QBP(AAS),
∴AP=QP,BA=BQ.
又∵AB=BC,
∴BC=BQ.
又∵∠C=∠BQH=90°,
∴△BCH和△BQH是直角三角形,
在Rt△BCH與Rt△BQH中,
,
∴Rt△BCH≌Rt△BQH(HL),
∴CH=QH,
∴AP+HC=PH.
(3)解:∵AP=2,
∴PD=AD-AP=8-2=6,
設(shè)AE=x,則EP=8-x,
在Rt△AEP中,AE2+AP2=PE2,
即x2+22=(8-x)2,
解得:x=,
∵∠A=∠D=∠ABC=90°,
∴∠AEP+∠APE=90°,
由折疊的性質(zhì)可得:∠EPG=∠ABC=90°,
∴∠APE+∠DPH=90°,
∴∠AEP=∠DPH,
∴△DPH∽△AEP,
∴,
∴,
解得:DH=.
∴PH=
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,學(xué)校的實(shí)驗(yàn)樓對(duì)面是一幢教學(xué)樓,小敏在實(shí)驗(yàn)樓的窗口C測(cè)得教學(xué)樓頂部D的仰角為18°,教學(xué)樓底部B的俯角為20°,量得實(shí)驗(yàn)樓與教學(xué)樓之間的距離AB=30m.
(1)求∠BCD的度數(shù).
(2)求教學(xué)樓的高BD.(結(jié)果精確到0.1m,參考數(shù)據(jù):tan20°≈0.36,tan18°≈0.32)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一張長(zhǎng)方形桌子可坐6人,按圖3將桌子拼在一起.
(1)2張桌子拼在一起可坐 人,4張桌子拼在一起可坐 人,n張桌子拼在一起可坐 人;
(2)一家餐廳有40張這樣的長(zhǎng)方形桌子,按照上圖的方式每5張拼成1張大桌子,則40張桌子可拼成8張大桌子,共可坐多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】《如果想毀掉一個(gè)孩子,就給他一部手機(jī)!》這是2017年微信圈一篇熱傳的文章.國(guó)際上,法國(guó)教育部宣布從 2018 年9月新學(xué)期起小學(xué)和初中禁止學(xué)生使用手機(jī).為了解學(xué)生手機(jī)使用情況,某學(xué)校開(kāi)展了“手機(jī)伴我健康行”主題活動(dòng),他們隨機(jī)抽取部分學(xué)生進(jìn)行“使用手機(jī)目的”和“每周使用手機(jī)的時(shí)間”的問(wèn)卷調(diào)查,并繪制成如圖①,②的 統(tǒng)計(jì)圖,已知“查資料”的人數(shù)是 40人.請(qǐng)你根據(jù)以上信息解答下列問(wèn)題:
(1)在扇形統(tǒng)計(jì)圖中,“玩游戲”對(duì)應(yīng)的百分比為______,圓心角度數(shù)是______度;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)該校共有學(xué)生2100人,估計(jì)每周使用手機(jī)時(shí)間在2 小時(shí)以上(不含2小時(shí))的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD、等腰Rt△BPQ的頂點(diǎn)P在對(duì)角線(xiàn)AC上(點(diǎn)P與A、C不重合),QP與BC交于E,QP延長(zhǎng)線(xiàn)與AD交于點(diǎn)F,連接CQ.
(1)①求證:AP=CQ;②求證:PA2=AFAD;
(2)若AP:PC=1:3,求tan∠CBQ.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面宜角坐標(biāo)系xOy中,直線(xiàn)y=x+4與x軸,y軸交于點(diǎn)A,B.第一象限內(nèi)有一點(diǎn)P(m,n),正實(shí)數(shù)m,n滿(mǎn)足4m+3n=12
(1)連接AP,PO,△APO的面積能否達(dá)到7個(gè)平方單位?為什么?
(2)射線(xiàn)AP平分∠BAO時(shí),求代數(shù)式5m+n的值;
(3)若點(diǎn)A′與點(diǎn)A關(guān)于y軸對(duì)稱(chēng),點(diǎn)C在x軸上,且2∠CBO+∠PA′O=90°,小慧演算后發(fā)現(xiàn)△ACP的面積不可能達(dá)到7個(gè)平方單位.請(qǐng)分析并評(píng)價(jià)“小薏發(fā)現(xiàn)”.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某服裝廠(chǎng)生產(chǎn)一種西裝和領(lǐng)帶,西裝每套定價(jià)300元,領(lǐng)帶每條定價(jià)40元.廠(chǎng)方在開(kāi)展促銷(xiāo)活動(dòng)期間,向客戶(hù)提供兩種優(yōu)惠方案:①買(mǎi)一套西裝送一條領(lǐng)帶;②西裝和領(lǐng)帶的定價(jià)打9折付款.現(xiàn)有某客戶(hù)要到該服裝廠(chǎng)購(gòu)買(mǎi)西裝50套,領(lǐng)帶條().
(1)若該客戶(hù)按方案一購(gòu)買(mǎi),需付款______元.(用含的代數(shù)式表示),若該客戶(hù)按方案二購(gòu)買(mǎi),需付款______元.(用含的代數(shù)式表示)
(2)若該客戶(hù)購(gòu)買(mǎi)西裝50套,領(lǐng)帶60條,請(qǐng)通過(guò)計(jì)算說(shuō)明按哪種方案購(gòu)買(mǎi)較為合算;
(3)若該客戶(hù)購(gòu)買(mǎi)西裝50套,領(lǐng)帶200條,請(qǐng)通過(guò)計(jì)算說(shuō)明按哪種方案購(gòu)買(mǎi)較為合算.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=90°,AH⊥BC于點(diǎn)H,過(guò)點(diǎn)C作CD⊥AC,連接AD,點(diǎn)M為AC上一點(diǎn),且AM=CD,連接BM交AH于點(diǎn)N,交AD于點(diǎn)E.
(1)若AB=3,AD=,求△BMC的面積;
(2)點(diǎn)E為AD的中點(diǎn)時(shí),求證:AD=BN .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】矩形 內(nèi)一點(diǎn) 到頂點(diǎn) ,, 的長(zhǎng)分別是 ,,,則 ________________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com