【題目】《如果想毀掉一個孩子,就給他一部手機!》這是2017年微信圈一篇熱傳的文章.國際上,法國教育部宣布從 2018 年9月新學(xué)期起小學(xué)和初中禁止學(xué)生使用手機.為了解學(xué)生手機使用情況,某學(xué)校開展了“手機伴我健康行”主題活動,他們隨機抽取部分學(xué)生進行“使用手機目的”和“每周使用手機的時間”的問卷調(diào)查,并繪制成如圖①,②的 統(tǒng)計圖,已知“查資料”的人數(shù)是 40人.請你根據(jù)以上信息解答下列問題:
(1)在扇形統(tǒng)計圖中,“玩游戲”對應(yīng)的百分比為______,圓心角度數(shù)是______度;
(2)補全條形統(tǒng)計圖;
(3)該校共有學(xué)生2100人,估計每周使用手機時間在2 小時以上(不含2小時)的人數(shù).
【答案】(1)35%,126;(2)見解析;(3)1344人
【解析】
(1)由扇形統(tǒng)計圖其他的百分比求出“玩游戲”的百分比,乘以360即可得到結(jié)果;
(2)求出3小時以上的人數(shù),補全條形統(tǒng)計圖即可;
(3)由每周使用手機時間在2小時以上(不含2小時)的百分比乘以2100即可得到結(jié)果.
(1)根據(jù)題意得:1﹣(40%+18%+7%)=35%,
則“玩游戲”對應(yīng)的圓心角度數(shù)是360°×35%=126°,
故答案為:35%,126;
(2)根據(jù)題意得:40÷40%=100(人),
∴3小時以上的人數(shù)為100﹣(2+16+18+32)=32(人),
補全圖形如下:
;
(3)根據(jù)題意得:2100×=1344(人),
則每周使用手機時間在2小時以上(不含2小時)的人數(shù)約有1344人.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某海域有A、B、C三艘船正在捕魚作業(yè),C船突然出現(xiàn)故障,向A、B兩船發(fā)出緊急求救信號,此時B船位于A船的北偏西72°方向,距A船24海里的海域,C船位于A船的北偏東33°方向,同時又位于B船的北偏東78°方向.
(1)求∠ABC的度數(shù);
(2)A船以每小時30海里的速度前去救援,問多長時間能到出事地點.(結(jié)果精確到0.01小時).
(參考數(shù)據(jù): ≈1.414, ≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,E是AB的中點,且DE⊥AB于點E,∠CAD:∠EAD=1:2,則∠B與∠BAC的度數(shù)為( )
A. 30°,60° B. 32°,58° C. 36°,54° D. 20°,70°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線y=ax2+bx+c(a≠0)與x軸交于點A(-1,0),B(4,0)兩點,與y軸交于點C,且OC=3OA,點P是拋物線上的一個動點,過點P作PE⊥x軸于點E,交直線BC于點D,連接PC.
(1)試求拋物線的解析式;
(2)如圖2,當動點P只在第一象限的拋物線上運動時,過點P作PF⊥BC于點F,試問△PFD的周長是否有最大值?如果有,請求出最大值;如果沒有,請說明理由.
(3)當點P在拋物線上運動時,將△CPD沿直線CP翻折,點D的對應(yīng)點為點Q,試問,四 邊形CDPQ能否成為菱形?如果能,請求此時點P的坐標;如果不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算:(1)25×26=________;
(2)×=________;
(3)-a2·a5=________;
(4)x2·x2m-2=________;
(5)(-b)2·(-b)3·(-b)5=________;
(6)x·x4+x5=________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系 中,已知直線 ( )分別交反比例函數(shù) 和 在第一象限的圖象于點 , ,過點 作 軸于點 ,交 的圖象于點 ,連結(jié) .若 是等腰三角形,則 的值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC=10cm,BC=8cm,點D為AB的中點.
(1)如果點P在線段BC上以3cm/s的速度由B點向C點運動,同時,點Q在線段CA上由C點向A點運動.
①若點Q的運動速度與點P的運動速度相等,經(jīng)過1s后,△BPD與△CQP是否全等,請說明理由;
②若點Q的運動速度與點P的運動速度不相等,當點Q的運動速度為多少時,能夠使△BPD與△CQP全等?
(2)若點Q以②中的運動速度從點C出發(fā),點P以原來的運動速度從點B同時出發(fā),都逆時針沿△ABC三邊運動,求經(jīng)過多長時間點P與點Q第一次在△ABC的哪條邊上相遇?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,銳角△ABC中,D、E分別是AB、AC邊上的點,△ADC≌△ADC′,△AEB≌△AEB′,且C′D∥EB′∥BC,BE、CD交于點F.若∠BAC=35°,則∠BFC的大小是( )
A. 105° B. 110° C. 100° D. 120°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com