【題目】如圖,邊長為6的正方形繞點按順時針方向旋轉后得到正方形,交于點,則____________.
科目:初中數學 來源: 題型:
【題目】已知:二次函數y=x2+bx+c的圖象與x軸交于A,B兩點,其中A點坐標為(﹣3,0),與y軸交于點C,點D(﹣2,﹣3)在拋物線上.
(1)求拋物線的解析式;
(2)拋物線的對稱軸上有一動點P,求出PA+PD的最小值;
(3)點G拋物線上的動點,在x軸上是否存在點E,使B、D、E、G這樣的四個點為頂點的四邊形是平行四邊形?如果存在,求出所有滿足條件的E點坐標;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀材料題
點A、B在數軸上分別表示實數、,A、B兩點之間的距離記作AB. 當A、B兩點中有一點為原點時,不妨設A點在原點。如下圖①所示,則AB =OB ==.
當A、B兩點都不在原點時:
(1)上圖②所示,點A、B都在原點的右邊,不妨設點A在點B的左側,則AB=OB-OA====
(2)上圖③所示,點A、B都在原點的左邊,不妨設點A在點B的右側,則AB=OB-OA====
(3)如上圖④所示,點A、B分別在原點的兩邊,不妨設點A在點O的右側,則AB=OB+OA===
回答下列問題:
①綜上所述,數軸上A、B兩點之間的距離AB= .
②數軸上表示2和的兩點A和B之間的距離AB= .
③數軸上表示x和的兩點A和B之間的距離AB= ,如果AB=2,則x的值為 .
④若代數式有最小值,則最小值為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,動點P在平面直角坐標系中按圖中箭頭所示方向運動,第1次從原點運動到點(1,1),第2次接著運動到點(2,0),第3次接著運動到點(3,2),…,按這樣的運動規(guī)律,經過第2017次運動后,動點P的坐標是______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,平面直角坐標系x0y中,點A(0,2),B(1,0),C(﹣4,0)點D為射線AC上一動點,連結BD,交y軸于點F,⊙M是△ABD的外接圓,過點D的切線交x軸于點E.
(1)判斷△ABC的形狀;
(2)當點D在線段AC上時,
①證明:△CDE∽△ABF;
②如圖2,⊙M與y軸的另一交點為N,連結DN、BN,當四邊形ABND為矩形時,求tan∠DBC;
(3)點D在射線AC運動過程中,若,求的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知A(-3,-3),B(-2,-1),C(-1,-2)是直角坐標平面上的三點.
(1)請畫出△ABC關于x軸對稱的△ABC;
(2)請寫出B點關于y軸對稱的點B2的坐標;若將點B向上平移h個單位,欲使其落在△A1B1C1內部,指出h的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,等邊的邊長為,點從點出發(fā)沿向點運動,點從點出發(fā)沿的延長線向右運動,已知點,都以的速度同時開始運動,運動過程中與相交于點,點運動到點后兩點同時停止運動.
(1)當是直角三角形時,求,兩點運動的時間;
(2)求證:在運動過程中,點始終是線段的中點.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)請在橫線上填寫適當的內容,完成下面的解答過程:
如圖①,如果∠ABE+∠BED+∠CDE=360°,試說明AB∥CD.
理由:過點E作EF∥AB
所以∠ABE+∠BEF= °( )
又因為∠ABE+∠BED+∠CDE=360°
所以∠FED+∠CDE= °
所以EF∥ .
又因為EF∥AB,
所以AB∥CD.
(2)如圖②,如果AB∥CD,試說明∠BED=∠B+∠D.
(3)如圖③,如果AB∥CD,∠BEC=α,BF平分∠ABE,CF平分∠DCE,則∠BFC的度數是 (用含α的代數式表示).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我們約定:體重在選定標準的%(包含)范圍之內時都稱為“一般體重”.為了解某校七年級男生中具有“一般體重”的人數,我們從該校七年級男生中隨機選出10名男生,測量出他們的體重(單位:kg),收集并整理得到如下統(tǒng)計表:
男生序號 | ① | ② | ③ | ④ | ⑤ | ⑥ | ⑦ | ⑧ | ⑨ | ⑩ |
體重(kg) | 45 | 62 | 55 | 58 | 67 | 80 | 53 | 65 | 60 | 55 |
根據以上表格信息解決如下問題:
(1)將這組數據的三個統(tǒng)計量:平均數、中位數和眾數填入下表:
平均數 | 中位數 | 眾數 |
(2)請你選擇其中一個統(tǒng)計量作為選定標準,說明選擇的理由.并按此選定標準找出這10名男生中具有“一般體重”的男生.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com