【題目】已知二次函數(shù)y=ax+bx+c(a≠0)的圖象如圖所示,有下列5個結(jié)論:①abc0;b-ac:③4a+2b+c0;3a-c;⑤a+bm(am+b)(m≠1的實數(shù)).其中結(jié)論正確的有( )

A. ①②③

B. ②③⑤

C. ②③④

D. ③④⑤

【答案】B

【解析】

由拋物線對稱軸的位置判斷ab的符號,由拋物線與y軸的交點判斷c的符號,然后根據(jù)對稱軸及拋物線與x軸交點情況進(jìn)行推理,進(jìn)而對所得結(jié)論進(jìn)行判斷.

①對稱軸在y軸的右側(cè),∴ab0,由題圖可知c0,∴abc0,故①不正確;

②當(dāng)x=-1時,y=a-b+c0,∴b-ac,故②正確;

③由對稱知,當(dāng)x=2時,函數(shù)值大于0,即y= 4a+2b+c0,故③正確;

④∵,b=-2a,∵a-b+c0,∴a+2a+c0,即3a-c,故④不正確;

⑤當(dāng)x=1時,y的值最大.此時,y=a+b+c,而當(dāng)x=m時,y=am +bm+c,所以a+b+cam+bm+c(m≠1),故a+bam+bm,即a+bm(am+b),故⑤正確.

故②③⑤正確.

故選B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=x+m與雙曲線相交于A2,1)、B兩點.

1)求mk的值;

2)不解關(guān)于x、y的方程組直接寫出點B的坐標(biāo);

3)直線y=2x+4m經(jīng)過點B嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)組織七、八、九年級學(xué)生參加全區(qū)作文比賽,該校將收到的參賽作文進(jìn)行分年級統(tǒng)計,繪制了如圖1和如圖2兩幅不完整的統(tǒng)計圖,根據(jù)圖中提供的信息完成以下問題.

(1)此次參賽的作文篇數(shù)共有    篇;

(2)扇形統(tǒng)計圖中九年級參賽作文篇數(shù)對應(yīng)的圓心角是   度,并補全條形統(tǒng)計圖;

(3)經(jīng)過評審,全校有4篇作文榮獲特等獎,其中有一篇來自七年級,學(xué)校準(zhǔn)備從特等獎作文中任選兩篇刊登在校刊上,請利用畫樹狀圖或列表的方法求出七年級特等獎作文被選登在?系母怕剩

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,BC的延長線與AD的延長線交于點E,且DC=DE.

1)求證:∠A=AEB.

2)連接OE,交CD于點FOECD,求證:ABE是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)已知:如圖1,四邊形ABCD內(nèi)接于⊙O,延長BCE.求證:∠A+BCD=180°,∠DCE=A

2)依已知條件和(1)中的結(jié)論:

①如圖2,若點C在⊙O外,且A、C兩點分別在直線BD的兩側(cè).試確定∠A+BCD180°的大小關(guān)系;

②如圖3,若點C在⊙O內(nèi),且A、C兩點分別在直線BD的兩側(cè).試確定∠A+BCD180°的大小關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)學(xué)興趣小組的活動中,小明進(jìn)行數(shù)學(xué)探究活動,將邊長為2的正方形ABCD與邊長為2的正方形AEFG按圖①位置放置,ADAE在同一直線上,ABAG在同一直線上.

⑴小明發(fā)現(xiàn)DGBE,請你幫他說明理由.

⑵如圖②,小明將正方形ABCD繞點A逆時針旋轉(zhuǎn),當(dāng)點B恰好落在線段DG上時,請你幫他求出此時BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形紙片ABCD中,AB10CD2,ADBC5,∠A=∠B,現(xiàn)將紙片沿EF折疊,使點A的對應(yīng)點A落在邊AB上,連接AC,如果ABC恰好是以AC為腰的等腰三角形,則AE的長是___

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BC是半⊙O的直徑,點P是半圓弧的中點,點A是弧BP的中點,ADBCD,連結(jié)AB、PBAC,BP分別與AD、AC相交于點E、F

1)求證:AE=BE

2)判斷BEEF是否相等嗎,并說明理由;

3)小李通過操作發(fā)現(xiàn)CF=2AB,請問小李的發(fā)現(xiàn)是否正確?若正確,請說明理由;若不正確,請寫出CFAB正確的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市政部門為了保護(hù)生態(tài)環(huán)境,計劃購買A,B兩種型號的環(huán)保設(shè)備.已知購買一套A型設(shè)備和三套B型設(shè)備共需230萬元,購買三套A型設(shè)備和兩套B型設(shè)備共需340萬元.

1)求A型設(shè)備和B型設(shè)備的單價各是多少萬元;

2)根據(jù)需要市政部門采購A型和B型設(shè)備共50套,預(yù)算資金不超過3000萬元,問最多可購買A型設(shè)備多少套?

查看答案和解析>>

同步練習(xí)冊答案