【題目】如圖,△ABC中,AB=AC,點(diǎn)P為△ABC內(nèi)一點(diǎn),∠APB=∠BAC=120°.若AP+BP=4,則PC的最小值為( )
A. 2B. C. D. 3
【答案】B
【解析】
把△APB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)120°得到△AP'C,作AD⊥PP'于D,根據(jù)旋轉(zhuǎn)變換的性質(zhì)和等腰三角形的性質(zhì)得到∠AP'P=30°,根據(jù)直角三角形的性質(zhì)得到PP'AP,根據(jù)勾股定理和配方法計(jì)算.
把△APB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)120°得到△AP'C,作AD⊥PP'于D,則AP=AP',∠PAP'=120°,∠AP'C=∠APB=120°,∴∠AP'P=30°,∴PP'AP,∠PP'C=90°.
∵AP+BP=4,∴BP=4﹣PA.在Rt△PP'C中,PC,則PC的最小值為2.
故選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知點(diǎn),,且、滿足,的邊與軸交于點(diǎn),且為中點(diǎn),雙曲線經(jīng)過(guò)、兩點(diǎn).
(1)求的值;
(2)點(diǎn)在雙曲線上,點(diǎn)在軸上,若以點(diǎn)、、、為頂點(diǎn)的四邊形是平行四邊形,試求滿足要求的所有點(diǎn)、的坐標(biāo);
(3)以線段為對(duì)角線作正方形(如圖,點(diǎn)是邊上一動(dòng)點(diǎn),是的中點(diǎn),,交于,當(dāng)在上運(yùn)動(dòng)時(shí),的值是否發(fā)生改變?若改變,求出其變化范圍;若不改變,請(qǐng)求出其值,并給出你的證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)有一個(gè)六面分別標(biāo)有數(shù)字1,2,3,4,5,6,且質(zhì)地均勻的正方體篩子,另有三張正面分別標(biāo)有1,2,3,的卡片(卡片除數(shù)字外,其他都相同),先由小明擲篩子一次,記下篩子向上一面出現(xiàn)的數(shù)字,然后由小王從三張背面朝上放置在桌面上的卡片中隨機(jī)抽取一張,記下卡片上的數(shù)字。
(1)請(qǐng)用列表或樹(shù)狀圖的方法,求出篩子向上一面出現(xiàn)的數(shù)字與卡片上的數(shù)字之積為6的概率;
(2)小明和小王做游戲,約定游戲規(guī)則如下:若篩子向上一面出現(xiàn)的數(shù)字與卡片上的數(shù)字之積大于7,則小明贏;若篩子向上一面出現(xiàn)的數(shù)字與卡片上的數(shù)字之積小于7,則小王贏;問(wèn)小明和小王誰(shuí)贏的可能性更大?請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=﹣x2+x+與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,點(diǎn)D是拋物線的頂點(diǎn).
(1)如圖1,P為直線BC上方拋物線上一動(dòng)點(diǎn),過(guò)點(diǎn)P作PQ∥y軸交BC于點(diǎn)Q.在拋物線的對(duì)稱軸上有一動(dòng)點(diǎn)M,在x軸上有一動(dòng)點(diǎn)N,當(dāng)6PQ﹣CQ的值最大時(shí),求PM+MN+NB的最小值;
(2)如圖2,將△ABC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°后得到△A′BC',再將△A′BC′向右平移1個(gè)單位得到△A“B′C“,那么在拋物線的對(duì)稱軸DM上,是否存在點(diǎn)T,使得△A′B′T為等腰三角形?若存在,求出點(diǎn)T到x軸的距離;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直坐標(biāo)系中,有A(﹣2,3),B(﹣2,﹣1)兩點(diǎn),若點(diǎn)A關(guān)于y軸的對(duì)稱點(diǎn)為點(diǎn)C,點(diǎn)B向右平移8個(gè)單位到點(diǎn)D.
(1)分別寫(xiě)出點(diǎn)C,點(diǎn)D的坐標(biāo);
(2)若一次函數(shù)圖象經(jīng)過(guò)C,D兩點(diǎn),求一次函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】四邊形ABCD中,AB=BC,∠B=∠C=90°,P是BC邊上一點(diǎn),AP⊥PD,E是AB邊上一點(diǎn),∠BPE=∠BAP.
(1) 如圖1,若AE=PE,直接寫(xiě)出=______;
(2) 如圖2,求證:AP=PD+PE;
(3) 如圖3,當(dāng)AE=BP時(shí),連BD,則=______,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,中,是上一點(diǎn),于點(diǎn),是的中點(diǎn),于點(diǎn),與交于點(diǎn),若,平分,連接,.
(1)求證:;
(2)小亮同學(xué)經(jīng)過(guò)探究發(fā)現(xiàn):.請(qǐng)你幫助小亮同學(xué)證明這一結(jié)論.
(3)若,判定四邊形是否為菱形,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=4,BC=3,點(diǎn)E、F分別在AC,AB上,連接EF.
(1)將△ABC沿EF折疊,使點(diǎn)A落在AB邊上的點(diǎn)D處,如圖1,若S四邊形ECBD=2S△EDF,求AE的長(zhǎng);
(2)將△ABC沿EF折疊,使點(diǎn)A落在BC邊上的點(diǎn)M處,如圖2,若MF⊥CB.
①求AE的長(zhǎng);②求四邊形AEMF的面積;
(3)若點(diǎn)E在射線AC上,點(diǎn)F在邊AB上,點(diǎn)A關(guān)于EF所在直線的對(duì)稱點(diǎn)為點(diǎn)P,問(wèn):是否存在以PF、CB為對(duì)邊的平行四邊形,若存在,求出AE的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,點(diǎn)P是AB邊上一點(diǎn)不與A,B重合,,過(guò)點(diǎn)作,交AD邊于點(diǎn)Q,連結(jié)CQ.
若,求證:四邊形ABCD是矩形;
在的條件下,當(dāng),時(shí),求AQ的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com