【題目】如圖,中,是上一點,于點,是的中點,于點,與交于點,若,平分,連接,.
(1)求證:;
(2)小亮同學經(jīng)過探究發(fā)現(xiàn):.請你幫助小亮同學證明這一結(jié)論.
(3)若,判定四邊形是否為菱形,并說明理由.
【答案】(1)證明見解析;(2)證明見解析;(3)四邊形是菱形,理由見解析.
【解析】(1)由條件得出∠C=∠DHG=90°,∠CGE=∠GED,由F是AD的中點,FG∥AE,即可得到FG是線段ED的垂直平分線,進而得到GE=GD,∠CGE=∠GDE,利用AAS即可判定△ECG≌△GHD;
(2)過點G作GP⊥AB于P,判定△CAG≌△PAG,可得AC=AP,由(1)可得EG=DG,即可得到Rt△ECG≌Rt△GPD,依據(jù)EC=PD,即可得出AD=AP+PD=AC+EC;
(3)由∠B=30°,可得∠ADE=30°,進而得到AE=AD,故AE=AF=FG,再根據(jù)四邊形AECF是平行四邊形,即可得到四邊形AEGF是菱形.
(1)∵AF=FG,∴∠FAG=∠FGA.
∵AG平分∠CAB,∴∠CAG=∠FGA,∴∠CAG=∠FGA,∴AC∥FG.
∵DE⊥AC,∴FG⊥DE.
∵FG⊥BC,∴DE∥BC,∴AC⊥BC,∴∠C=∠DHG=90°,∠CGE=∠GED.
∵F是AD的中點,FG∥AE,∴H是ED的中點,∴FG是線段ED的垂直平分線,∴GE=GD,∠GDE=∠GED,∴∠CGE=∠GDE,∴△ECG≌△GHD;
(2)過點G作GP⊥AB于P,∴GC=GP,而AG=AG,∴△CAG≌△PAG,∴AC=AP,由(1)可得EG=DG,∴Rt△ECG≌Rt△GPD,∴EC=PD,∴AD=AP+PD=AC+EC;
(3)四邊形AEGF是菱形.證明如下:
∵∠B=30°,∴∠ADE=30°,∴AE=AD,∴AE=AF=FG,由(1)得AE∥FG,∴四邊形AECF是平行四邊形,∴四邊形AEGF是菱形.
科目:初中數(shù)學 來源: 題型:
【題目】已知:在平面直角坐標系xOy中,點A(x1,y1)、B(x2,y2)是某函數(shù)圖象上任意兩點(x1<x2),將函數(shù)圖象中x<x1的部分沿直線y=y1作軸對稱,x>x2的部分沿直線y=y2作軸對稱,與原函數(shù)圖象中x1≤x≤x2的部分組成了一個新函數(shù)的圖象,稱這個新函數(shù)為原函數(shù)關(guān)于點A、B的“雙對稱函數(shù)”.例如:如圖①,點A(﹣2,﹣1)、B(1,2)是一次函數(shù)y=x+1圖象上的兩個點,則函數(shù)y=x+1關(guān)于點A、B的“雙對稱函數(shù)”的圖象如圖②所示.
(1)點A(t,y1)、B(t+3,y2)是函數(shù)y=圖象上的兩點,y=關(guān)于點A、B的“雙對稱函數(shù)”的圖象記作G,若G是中心對稱圖形,直接寫出t的值.
(2)點P(,y1),Q(+t,y2)是二次函數(shù)y=(x﹣t)2+2t圖象上的兩點,該二次函數(shù)關(guān)于點P、Q的“雙對稱函數(shù)”記作f.
①求P、Q兩點的坐標(用含t的代數(shù)式表示).
②當t=﹣2時,求出函數(shù)f的解析式;
③若﹣1≤x≤1時,函數(shù)f的最小值為ymin,求﹣2≤ymin≤﹣1時,t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩名射擊選示在10次射擊訓練中的成績統(tǒng)計圖(部分)如圖所示:
根據(jù)以上信息,請解答下面的問題;
選手 | A平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 |
甲 | a | 8 | 8 | c |
乙 | 7.5 | b | 6和9 | 2.65 |
(1)補全甲選手10次成績頻數(shù)分布圖.
(2)a= ,b= ,c= .
(3)教練根據(jù)兩名選手手的10次成績,決定選甲選手參加射擊比賽,教練的理由是什么?(至少從兩個不同角度說明理由).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=AC,點P為△ABC內(nèi)一點,∠APB=∠BAC=120°.若AP+BP=4,則PC的最小值為( )
A. 2B. C. D. 3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法正確的是( )
A.擲一枚質(zhì)地均勻的正方體骰子,骰子停止轉(zhuǎn)動后,5點朝上是必然事件
B.審查書稿中有哪些學科性錯誤適合用抽樣調(diào)查法
C.甲乙兩人在相同條件下各射擊10次,他們的成績的平均數(shù)相同,方差分別是=0.4,=0.6,則甲的射擊成績較穩(wěn)定
D.擲兩枚質(zhì)地均勻的硬幣,“兩枚硬幣都是正面朝上”這一事件發(fā)生的概率為
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某水果商從批發(fā)市場用8000元購進了大櫻桃和小櫻桃各200千克,大櫻桃的進價比小櫻桃的進價每千克多20元.大櫻桃售價為每千克40元,小櫻桃售價為每千克16元.
(1)大櫻桃和小櫻桃的進價分別是每千克多少元?銷售完后,該水果商共賺了多少元錢?
(2)該水果商第二次仍用8000元錢從批發(fā)市場購進了大櫻桃和小櫻桃各200千克,進價不變,但在運輸過程中小櫻桃損耗了20%.若小櫻桃的售價不變,要想讓第二次賺的錢不少于第一次所賺錢的90%,大櫻桃的售價最少應(yīng)為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】《如果想毀掉一個孩子,就給他一部手機!》這是2017年微信圈一篇熱傳的文章.國際上,法國教育部宣布從 2018 年9月新學期起小學和初中禁止學生使用手機.為了解學生手機使用情況,某學校開展了“手機伴我健康行”主題活動,他們隨機抽取部分學生進行“使用手機目的”和“每周使用手機的時間”的問卷調(diào)查,并繪制成如圖①,②的 統(tǒng)計圖,已知“查資料”的人數(shù)是 40人.請你根據(jù)以上信息解答下列問題:
(1)在扇形統(tǒng)計圖中,“玩游戲”對應(yīng)的百分比為______,圓心角度數(shù)是______度;
(2)補全條形統(tǒng)計圖;
(3)該校共有學生2100人,估計每周使用手機時間在2 小時以上(不含2小時)的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖所示.在△ABC中,∠B=90°,AB=5cm,BC=7cm.點P從點A開始沿AB邊向點B以1cm/s的速度移動,點Q從點B開始沿BC邊向點C以2cm/s的速度移動.如果P,Q分別從A,B同時出發(fā),那么幾秒后,△PBQ的面積等于4cm2?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ACB中,∠ACB=90°,AC=BC,D是AB上的一個動點(不與點A,B重合),連接CD,將CD繞點C順時針旋轉(zhuǎn)90°得到CE,連接DE,DE與AC相交于點F,連接AE.下列結(jié)論:①△ACE≌△BCD;②若∠BCD=25°,則∠AED=65°;③DE2=2CFCA;④若AB=3,AD=2BD,則AF=.其中正確的結(jié)論是______.(填寫所有正確結(jié)論的序號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com