【題目】如圖,在 RtABC 中,∠BAC=90°AB=6,AC=8,D AC 上一點(diǎn),將ABD 沿 BD 折疊,使點(diǎn) A 恰好落在 BC 上的 E 處,則折痕 BD 的長(zhǎng)是(

A.5B.C.3 D.

【答案】C

【解析】

根據(jù)勾股定理易求BC=10.根據(jù)折疊的性質(zhì)有AB=BE,AD=DE,∠A=DEB=90°,
CDE中,設(shè)AD=DE=x,則CD=8-x,EC=10-6=4.根據(jù)勾股定理可求x,ADE中,運(yùn)用勾股定理求BD

解:∵∠A=90°,AB=6,AC=8
BC=10
根據(jù)折疊的性質(zhì),AB=BEAD=DE,∠A=DEB=90°
EC=10-6=4
CDE中,設(shè)AD=DE=x,則CD=8-x,根據(jù)勾股定理得
8-x2=x2+42
解得x=3
DE=3
BD==3,故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖1,直線x軸、y軸分別交于點(diǎn)AC兩點(diǎn),點(diǎn)B的橫坐標(biāo)為2.

圖1 圖2

(1)求A、C兩點(diǎn)的坐標(biāo)和拋物線的函數(shù)關(guān)系式;

(2)點(diǎn)D是直線AC上方拋物線上任意一點(diǎn),P為線段AC上一點(diǎn),且SPCD=2SPAD ,求點(diǎn)P的坐標(biāo);

(3)如圖2,另有一條直線y=-x與直線AC交于點(diǎn)MN為線段OA上一點(diǎn),∠AMN=∠AOM.點(diǎn)Qx軸負(fù)半軸上一點(diǎn),且點(diǎn)Q到直線MN和直線MO的距離相等,求點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)A(,1)在射線OM上,點(diǎn)B(,3)在射線ON上,以AB為直角邊作RtABA1,以BA1為直角邊作第二個(gè)RtBA1B1,以A1B1為直角邊作第三個(gè)RtA1B1A2,依此規(guī)律,得到RtB2018A2019B2019,則點(diǎn)B2019的縱坐標(biāo)為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為直線x=1,與軸的一個(gè)交點(diǎn)坐標(biāo)為(1,0),其部分圖象如圖所示,下列結(jié)論:

4ac<b2; 方程ax2+bx+c=0的兩個(gè)根是 3a+c>0; 當(dāng)y>0時(shí),x的取值范圍是-1≤x<3; 當(dāng)x<0時(shí),yx增大而增大;

其中結(jié)論正確有__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知等腰三角形ABC中,AB=AC,點(diǎn)DE分別在邊AB、AC上,且AD=AE,連接BE、CD,交于點(diǎn)F

(1)判斷∠ABE與∠ACD的數(shù)量關(guān)系,并說明理由;

(2)求證:過點(diǎn)AF的直線垂直平分線段BC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,B=60°,BC=2,A′B′C′可以由ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得到,其中點(diǎn)A′與點(diǎn)A是對(duì)應(yīng)點(diǎn),點(diǎn)B′與點(diǎn)B是對(duì)應(yīng)點(diǎn),連接AB′,且AB′、A′在同一條直線上,則AA′的長(zhǎng)為( 。

A. 4 B. 6 C. 3 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本小題6分)為了參加中考體育測(cè)試,甲,乙,丙三位同學(xué)進(jìn)行足球傳球訓(xùn)練。球從一個(gè)人

腳下隨機(jī)傳到另一個(gè)人腳下,且每位傳球人傳球給其余兩人的機(jī)會(huì)是均等的,由甲開始傳球,共傳三次。

1)求請(qǐng)用樹狀圖列舉出三次傳球的所有可能情況;

2)傳球三次后,球回到甲腳下的概率;

3)三次傳球后,球回到甲腳下的概率大還是傳到乙腳下的概率大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】國(guó)慶節(jié)期間,某文具店平均每天可賣出300張賀卡,賣出1張賀卡的利潤(rùn)是1元.經(jīng)調(diào)查發(fā)現(xiàn),零售單價(jià)每降0.1元,每天可多賣出100張賀卡.為了使每天獲取的利潤(rùn)更多,該店決定把零售單價(jià)下降元.

(1)零售單價(jià)下降元后,該店平均每天可賣出___________張賀卡,每張賀卡的利潤(rùn)為___________元;(用含的式子表示)

(2)在不考慮其他因素的條件下,該店希望每天賣賀卡獲得的利潤(rùn)是420元,并且能賣出更多的賀卡贏得市場(chǎng),應(yīng)定為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道,演繹推理的過程稱為證明,證明的出發(fā)點(diǎn)和依據(jù)是基本事實(shí).證明三角形全等的基本事實(shí)有:兩邊及其夾角分別相等的兩個(gè)三角形全等,兩角及其夾邊分別相等的兩個(gè)三角形全等,三邊分別相等的兩個(gè)三角形全等.

1)請(qǐng)選擇利用以上基本事實(shí)和三角形內(nèi)角和定理,結(jié)合下列圖形,證明:兩角分別相等且其中一組等角的對(duì)邊相等的兩個(gè)三角形全等.

2)把三角形的三條邊和三個(gè)角統(tǒng)稱為三角形的六個(gè)元素.如果兩個(gè)三角形有四對(duì)對(duì)應(yīng)元素相等,這兩個(gè)三角形一定全等嗎?請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案