【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結論:①abc<0;②2a+b=0; ③b2﹣4ac<0; ④9a+3b+c>0.其中正確的結論有____________( 填序號。
【答案】①②
【解析】
根據(jù)函數(shù)的圖象得出圖象的開口向下,與y軸的交點在y軸的正半軸上,對稱軸是直線x=1,拋物線的圖象和x軸有兩個交點,函數(shù)與x軸的交點坐標是(1,0)和(3,0),再逐個判斷即可.
∵圖象的開口向下,與y軸的交點在y軸的正半軸上,對稱軸是直線x=1,
∴a<0,c>0,=1,
即2a+b=0,b>0,
∴abc<0,故①②正確;
∵拋物線的圖象和x軸有兩個交點,
∴b24ac>0,故③錯誤;
∵拋物線的圖象的對稱軸是直線x=1,和x軸的一個交點坐標是(1,0),
∴另一個交點坐標是(3,0),
即當x=3時,y=a×32+b×3+c=0,故④錯誤;
故填:①②.
科目:初中數(shù)學 來源: 題型:
【題目】下列說法中錯誤的是【 】
A.某種彩票的中獎率為1%,買100張彩票一定有1張中獎
B.從裝有10個紅球的袋子中,摸出1個白球是不可能事件
C.為了解一批日光燈的使用壽命,可采用抽樣調(diào)查的方式
D.擲一枚普通的正六面體骰子,出現(xiàn)向上一面點數(shù)是2的概率是
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,四邊形ABCD內(nèi)接于⊙O,AB=AC,過點A作AE∥BD交CD的延長線于點E.
(1)求證:AE=DE;
(2)若∠BCD﹣∠CBD=60°,求∠ABD的度數(shù);
(3)在(2)的條件下,若BD=21,CD=9,求AE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,O 為原點,點 A(4,0),點 B(0,3),把△ABO 繞點 B 逆時針旋轉,得△A′BO′,點 A、O 旋轉后的對應點為 A′、O′,記旋轉角為ɑ.
(1)如圖 1,若ɑ=90°,求 AA′的長;
(2)如圖 2,若ɑ=120°,求點 O′的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某廠家生產(chǎn)一種新型電子產(chǎn)品,制造時每件的成本為40元,通過試銷發(fā)現(xiàn),銷售量萬件與銷售單價元之間符合一次函數(shù)關系,其圖象如圖所示.
求y與x的函數(shù)關系式;
物價部門規(guī)定:這種電子產(chǎn)品銷售單價不得超過每件80元,那么,當銷售單價x定為每件多少元時,廠家每月獲得的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】市面上販售的防曬產(chǎn)品標有防曬指數(shù),而其對抗紫外線的防護率算法為:防護率,其中.
請回答下列問題:
(1)廠商宣稱開發(fā)出防護率的產(chǎn)品,請問該產(chǎn)品的應標示為多少?
(2)某防曬產(chǎn)品文宣內(nèi)容如圖所示.
請根據(jù)與防護率的轉換公式,判斷此文宣內(nèi)容是否合理,并詳細解釋或完整寫出你的理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖:河上有一座拋物線形橋洞,已知橋下的水面離橋拱頂部3m時,水面寬AB=6m,建立如圖所示的坐標系.
(1)當水位上升0.5m時,求水面寬度CD為多少米?(結果可保留根號)
(2)有一艘游船它的左右兩邊緣最寬處有一個長方體形狀的遮陽棚,此船正對著橋洞在上述河流中航行,若這船寬(最大寬度)2米,從水面到棚頂高度為1.8米.問這艘船能否從橋下洞通過?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】綜合與探究
如圖,拋物線y=﹣x2﹣x+與x軸交于A、B兩點(點A在點B的左側),與y軸交于點C,直線l經(jīng)過B、C兩點,點M從點A出發(fā)以每秒1個單位長度的速度向終點B運動,連接CM,將線段MC繞點M順時針旋轉90°得到線段MD,連接CD、BD.設點M運動的時間為t(t>0),請解答下列問題:
(1)求點A的坐標與直線l的表達式;
(2)①請直接寫出點D的坐標(用含t的式子表示),并求點D落在直線l上時t的值;
②求點M運動的過程中線段CD長度的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com