【題目】如圖,直線l:y=﹣x+2與x軸、y軸分別交于A、B兩點(diǎn),動(dòng)點(diǎn)M從點(diǎn)A以每秒1個(gè)單位的速度沿x軸向左移動(dòng).
(1)求A、B兩點(diǎn)的坐標(biāo);
(2)將直線l向上平移4個(gè)單位后得到直線l',交y軸于點(diǎn)C.求直線l′的函數(shù)表達(dá)式;
(3)設(shè)點(diǎn)M的移動(dòng)時(shí)間為t,當(dāng)t為何值時(shí),△COM≌△AOB,并求出此時(shí)點(diǎn)M的坐標(biāo).
【答案】(1)A(6,0)、B(0,2);(2);(3)當(dāng)t=4或8時(shí),△COM≌△AOB,此時(shí)M(2,0)或(﹣2,0).
【解析】
(1)A和B是坐標(biāo)軸上的點(diǎn),求A和B的坐標(biāo),只需要令x=0,y=0,即可算出.
(2)向上平移4個(gè)單位,就是y軸交點(diǎn)縱坐標(biāo)向上平移4個(gè)單位.平移的函數(shù)表達(dá)式k不變,利用待定系數(shù)法可以求出得表達(dá)式.
(3)和中,OC=OA=6,,要使≌,只需要OB=OM就行.OB=2,當(dāng)OM=2時(shí),M在y軸左邊時(shí),AM=8,t=8;M在y軸在右邊時(shí),AM=4,t=4.
解:(1)對(duì)于直線l:y=﹣x+2,
當(dāng)x=0時(shí),y=2;當(dāng)y=0時(shí),x=6,
則A、B兩點(diǎn)的坐標(biāo)分別為A(6,0)、B(0,2);
(2)設(shè)直線l′的函數(shù)表達(dá)式為y=kx+b,
∵l′∥l,
∴k=﹣,
由題意l′經(jīng)過(guò)點(diǎn)(0,6),
∴b=6,
∴l′的函數(shù)表達(dá)式為;
(3)∵OC=OA=6,∠AOB=∠COM=90°,
∴當(dāng)點(diǎn)M在OA上時(shí),OB=OM=2,則△COM≌△AOB,
∴AM=AO﹣OM=4,
∴t=4÷1=4,M(2,0).
當(dāng)M在x軸的負(fù)半軸上時(shí),OM=OB=2,△COM≌△AOB,AM=8,
∴t=8÷1=8,點(diǎn)M(﹣2,0).
故當(dāng)t=4或8時(shí),△COM≌△AOB,此時(shí)M(2,0)或(﹣2,0).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知反比例函數(shù) y=的圖象如圖所示,則二次函數(shù) y =ax 2-2x和一次函數(shù) y=bx+a 在同一平面直角坐標(biāo)系中的圖象可能是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】成都市天府一南站城市立交橋是成都市政府確定的城建標(biāo)志性建筑,如圖是立交橋引申出的部分平面圖,測(cè)得拉索AB與水平橋面的夾角是37°,拉索DE與水平橋面的夾角是67°,兩拉索頂端的距離AD為2m,兩拉索底端距離BE為10m,請(qǐng)求出立柱AC的長(zhǎng).(參考數(shù)據(jù)tan37°≈,sin37°≈,cos37°≈,tan67°≈,sin67°≈,cos67°≈)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小麗同學(xué)學(xué)習(xí)了統(tǒng)計(jì)知識(shí)后,帶領(lǐng)班級(jí)“課外活動(dòng)小組”,隨機(jī)調(diào)查了某轄區(qū)若干名居民的年齡,并將調(diào)查數(shù)據(jù)繪制成圖①和圖②兩幅尚不完整的統(tǒng)計(jì)圖.
請(qǐng)你根據(jù)圖中的信息,解答下列各題:
(1)共抽查了_____名居民的年齡,扇形統(tǒng)計(jì)圖中_____,______;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該轄區(qū)居民約有2600人,請(qǐng)你估計(jì)年齡在15~59歲的居民人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,半徑為5的⊙A中,弦BC,ED所對(duì)的圓心角分別是∠BAC,∠EAD.已知DE=6,∠BAC+∠EAD=180°,則弦BC的弦心距等于 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校初級(jí)中學(xué)數(shù)學(xué)興趣小組為了解本校學(xué)生年齡情況,隨機(jī)調(diào)查了本校部分學(xué)生的年齡,根據(jù)所調(diào)查的學(xué)生的年齡(單位:歲),繪制出如下的統(tǒng)計(jì)圖①和圖②,請(qǐng)根據(jù)相關(guān)信息,解答下列問(wèn)題:
(1)本次接受調(diào)查的學(xué)生人數(shù)為_______,圖①中 的值為 ;
(2)求統(tǒng)計(jì)的這組學(xué)生年齡數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)均為1,的三個(gè)頂點(diǎn)均在小正方形的頂點(diǎn)上.
(1)在圖1中畫一個(gè)(點(diǎn)在小正方形的頂點(diǎn)上),使的周長(zhǎng)等于的周長(zhǎng),且以、、、為頂點(diǎn)的四邊形是軸對(duì)稱圖形;
(2)在圖2中畫(點(diǎn)在小正方形的頂點(diǎn)上),使的周長(zhǎng)等于的周長(zhǎng),且以、、、為頂點(diǎn)的四邊形是中心對(duì)稱圖形;
(3)直接寫出圖2中四邊形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知二次函數(shù)y=﹣x2+bx+c的圖象經(jīng)過(guò)點(diǎn)A(3,1),點(diǎn)B(0,4).
(1)求該二次函數(shù)的表達(dá)式及頂點(diǎn)坐標(biāo);
(2)點(diǎn)C(m,n)在該二次函數(shù)圖象上.
①當(dāng)m=﹣1時(shí),求n的值;
②當(dāng)m≤x≤3時(shí),n最大值為5,最小值為1,請(qǐng)根據(jù)圖象直接寫出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題探究
(1)請(qǐng)?jiān)趫D①的的邊上求作一點(diǎn),使最短;
(2)如圖②,點(diǎn)為內(nèi)部一點(diǎn),且滿足.求證:點(diǎn)到點(diǎn)、、的距離之和最短,即最短;
問(wèn)題解決
(3)如圖③,某高校有一塊邊長(zhǎng)為400米的正方形草坪,現(xiàn)準(zhǔn)備在草坪內(nèi)放置一對(duì)石凳及垃圾箱在點(diǎn)處,使點(diǎn)到、、三點(diǎn)的距離之和最小,那么是否存在符合條件的點(diǎn)?若存在,請(qǐng)作出點(diǎn)的位置,并求出這個(gè)最短距離;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com