【題目】綜合與實(shí)踐
正方形內(nèi)“奇妙點(diǎn)”及性質(zhì)探究
定義:如圖1,在正方形中,以為直徑作半圓,以為圓心,為半徑作,與半圓交于點(diǎn).我們稱點(diǎn)為正方形的一個(gè)“奇妙點(diǎn)”.過奇妙點(diǎn)的多條線段與正方形無論是位置關(guān)系還是數(shù)量關(guān)系,都具有不少優(yōu)美的性質(zhì)值得探究.
性質(zhì)探究:如圖2,連接并延長(zhǎng)交于點(diǎn),則為半圓的切線.
證明:連接.
由作圖可知,,
又.
,∴是半圓的切線.
問題解決:
(1)如圖3,在圖2的基礎(chǔ)上,連接.請(qǐng)判斷和的數(shù)量關(guān)系,并說明理由;
(2)在(1)的條件下,請(qǐng)直接寫出線段之間的數(shù)量關(guān)系;
(3)如圖4,已知點(diǎn)為正方形的一個(gè)“奇妙點(diǎn)”,點(diǎn)為的中點(diǎn),連接并延長(zhǎng)交于點(diǎn),連接并延長(zhǎng)交于點(diǎn),請(qǐng)寫出和的數(shù)量關(guān)系,并說明理由;
(4)如圖5,已知點(diǎn)為正方形的四個(gè)“奇妙點(diǎn)”.連接,恰好得到一個(gè)特殊的“趙爽弦圖”.請(qǐng)根據(jù)圖形,探究并直接寫出一個(gè)不全等的幾何圖形面積之間的數(shù)量關(guān)系.
【答案】(1),理由見解析;(2);(3),理由見解析;(4)答案不唯一,如:的面積等于正方形的面積;正方形的面積等于正方形面積的等.
【解析】
(1)先提出猜想,在圖2以及上面結(jié)論的基礎(chǔ)上,根據(jù)全等三角形的性質(zhì)、四邊形的內(nèi)角和、鄰補(bǔ)角的性質(zhì)可得出,再由邊邊邊定理可證得,然后利用全等三角形的性質(zhì)、等式性質(zhì)可得證結(jié)論;
(2)由(1)可知、,根據(jù)全等三角形的性質(zhì)、線段的和差即可得到結(jié)論;
(3)先提出猜想,添加輔助線構(gòu)造出直角三角形,由(1)可知,則其正切值相等,再根據(jù)正方形的性質(zhì)即可得證結(jié)論;
(4)根據(jù)前面的結(jié)論結(jié)合趙爽弦圖可證得
,即可提出猜想.
解:(1)結(jié)論:
理由如下:
∵
∴,,
∴
∵
∴
在和中
∵,
∴
∴
∵
∴;
(2)∵由(1)可知,、
∴,
∵
∴
∴線段、、之間的數(shù)量關(guān)系是;
(3)結(jié)論:
理由:連接、,如圖:
由(1)可知,
∵
∴
∵點(diǎn)為的中點(diǎn)
∴
∴
∵四邊形是正方形
∴
∴;
(4)延長(zhǎng)交于點(diǎn),連接、,如圖:
∵由前面的結(jié)論可知
∴
∵此圖為趙爽弦圖即
∴
同理可得、、
∵四邊形是正方形
∴
∴
∴在和中,
∴
∴
∴
∴
∴答案不唯一,例如,的面積等于正方形的面積;正方形的面積等于正方形面積的等等.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=ax+b(a≠0)的圖象與反比例函數(shù)(k≠0)的圖象交于A、B兩點(diǎn),與x軸交于點(diǎn)C,過點(diǎn)A作AH⊥x軸于點(diǎn)H,點(diǎn)O是線段CH的中點(diǎn),AC=,cos∠ACH=,點(diǎn)B的坐標(biāo)為(4,n)
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)求△BCH的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,Rt△OAB的頂點(diǎn)A在x軸的正半軸上,頂點(diǎn)B的坐標(biāo)為(3,),點(diǎn)C的坐標(biāo)為(1,0),點(diǎn)P為斜邊OB上的一動(dòng)點(diǎn),則PA+PC的最小值_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:兩個(gè)相似等腰三角形,如果它們的底角有一個(gè)公共的頂點(diǎn),那么把這兩個(gè)三角形稱為“關(guān)聯(lián)等腰三角形”.如圖,在與中, ,且所以稱與為“關(guān)聯(lián)等腰三角形”,設(shè)它們的頂角為,連接,則稱會(huì)為“關(guān)聯(lián)比".
下面是小穎探究“關(guān)聯(lián)比”與α之間的關(guān)系的思維過程,請(qǐng)閱讀后,解答下列問題:
[特例感知]
當(dāng)與為“關(guān)聯(lián)等腰三角形”,且時(shí),
①在圖1中,若點(diǎn)落在上,則“關(guān)聯(lián)比”=
②在圖2中,探究與的關(guān)系,并求出“關(guān)聯(lián)比”的值.
[類比探究]
如圖3,
①當(dāng)與為“關(guān)聯(lián)等腰三角形”,且時(shí),“關(guān)聯(lián)比”=
②猜想:當(dāng)與為“關(guān)聯(lián)等腰三角形”,且時(shí),“關(guān)聯(lián)比”= (直接寫出結(jié)果,用含的式子表示)
[遷移運(yùn)用]
如圖4, 與為“關(guān)聯(lián)等腰三角形”.若點(diǎn)為邊上一點(diǎn),且,點(diǎn)為上一動(dòng)點(diǎn),求點(diǎn)自點(diǎn)運(yùn)動(dòng)至點(diǎn)時(shí),點(diǎn)所經(jīng)過的路徑長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某村啟動(dòng)“脫貧攻堅(jiān)”項(xiàng)目,根據(jù)當(dāng)?shù)氐牡乩項(xiàng)l件,要在一座高為1000m的上種植一種經(jīng)濟(jì)作物.農(nóng)業(yè)技術(shù)人員在種植前進(jìn)行了主要相關(guān)因素的調(diào)查統(tǒng)計(jì),結(jié)果如下:
①這座山的山腳下溫度約為22°C,山高h(單位:m)每增加100m,溫度T(單位:°C)下降約0.5°C;
②該作物的種植成活率p受溫度T影響,且在19°C時(shí)達(dá)到最大.大致如表:
溫度T°C | 21 | 20.5 | 20 | 19.5 | 19 | 18.5 | 18 | 17.5 |
種植成活率p | 90% | 92% | 94% | 96% | 98% | 96% | 94% | 92% |
③該作物在這座山上的種植量w受山高h影響,大致如圖1:
(1)求T關(guān)于h的函數(shù)解析式,并求T的最小值;
(2)若要求該作物種植成活率p不低于92%,根據(jù)上述統(tǒng)計(jì)結(jié)果,山高h為多少米時(shí)該作物的成活量最大?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)是線段上一點(diǎn),,以點(diǎn)為圓心,的長(zhǎng)為半徑作⊙,過點(diǎn)作的垂線交⊙于,兩點(diǎn),點(diǎn)在線段的延長(zhǎng)線上,連接交⊙于點(diǎn),以,為邊作.
(1)求證:是⊙的切線;
(2)若,求四邊形與⊙重疊部分的面積;
(3)若,,連接,求和的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,∠B=60°,AB=2,M為邊AB的中點(diǎn),N為邊BC上一動(dòng)點(diǎn)(不與點(diǎn)B重合),將△BMN沿直線MN折疊,使點(diǎn)B落在點(diǎn)E處,連接DE、CE,當(dāng)△CDE為等腰三角形時(shí),BN的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1所示,拋物線與軸交于點(diǎn)兩點(diǎn),與軸交于點(diǎn),直線經(jīng)過點(diǎn),與拋物線另一個(gè)交點(diǎn)為,點(diǎn)是拋物線上的一個(gè)動(dòng)點(diǎn),過點(diǎn)作軸于點(diǎn),交直線于點(diǎn)
(1)求拋物線的解析式
(2)當(dāng)點(diǎn)在直線上方,且是以為腰的等腰三角形時(shí),求的坐標(biāo)
(3)如圖2所示,若點(diǎn)為對(duì)稱軸右側(cè)拋物線上一點(diǎn),連接,以為直角頂點(diǎn),線段為較長(zhǎng)直角邊,構(gòu)造兩直角邊比為的,是否存在點(diǎn),使點(diǎn)恰好落在直線上?若存在,請(qǐng)直接寫出相應(yīng)點(diǎn)的橫坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在等邊△ABC中,AB=6cm,動(dòng)點(diǎn)P從點(diǎn)A出發(fā)以1cm/s的速度沿AB勻速運(yùn)動(dòng),動(dòng)點(diǎn)Q同時(shí)從點(diǎn)C出發(fā)以同樣的速度沿BC的延長(zhǎng)線方向勻速運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí),點(diǎn)P、Q同時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t(s),過點(diǎn)P作PE⊥AC于E,PQ交AC邊于D,線段BC的中點(diǎn)為M,連接PM.
(1)當(dāng)t為何值時(shí),△CDQ與△MPQ相似;
(2)在點(diǎn)P、Q運(yùn)動(dòng)過程中,點(diǎn)D、E也隨之運(yùn)動(dòng),線段DE的長(zhǎng)度是否會(huì)發(fā)生變化?若發(fā)生變化,請(qǐng)說明理由,若不發(fā)生變化,求DE的長(zhǎng);
(3)如圖2,將△BPM沿直線PM翻折,得△B'PM,連接AB',當(dāng)t為何值時(shí),AB'的值最?并求出最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com