【題目】已知:如圖,O是直線AB上一點,OD是∠AOC的平分線,∠COD與∠COE互余

求證:∠AOE與∠COE互補.

請將下面的證明過程補充完整:

證明:∵O是直線AB上一點

∴∠AOB=180°

∵∠COD與∠COE互余

∴∠COD+COE=90°

∴∠AOD+BOE=_________°

OD是∠AOC的平分線

∴∠AOD=________(理由:_______________

∴∠BOE=COE(理由:________________

∵∠AOE+BOE=180°

∴∠AOE+COE=180°

∴∠AOE與∠COE互補

【答案】90;COD;角平分線所平分的兩角相等;如果兩個角相等,那么它的余角也相等

【解析】

首先根據(jù)平角的定義得出∠AOB=180°,然后根據(jù)余角的性質得出∠AOD+BOE=90°,再由角平分線的性質得出∠AOD=COD,進而得出∠BOE=COE,從而得出∠AOE+COE=180°,即可得證.

O是直線AB上一點

∴∠AOB=180°

∵∠COD與∠COE互余

∴∠COD+COE=90°

∴∠AOD+BOE=90°

OD是∠AOC的平分線

∴∠AOD=COD(理由:角平分線所平分的兩角相等)

∴∠BOE=COE(理由:如果兩個角相等,那么它的余角也相等)

∵∠AOE+BOE=180°

∴∠AOE+COE=180°

∴∠AOE與∠COE互補

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】碼頭工人往一艘輪船上裝載貨物,裝完貨物所需時間與裝載速度之間的函數(shù)關系如圖.

1)這批貨物的質量是多少?并求出之間的函數(shù)關系式;

2)輪船到達目的地后開始卸貨,如果以5t/min的速度卸貨,那么需要多少小時才能卸完貨?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】高考英語聽力測試期間,需要杜絕考點周圍的噪音,如圖,點A是某市一高考考點,在位于A考點南偏西15°方向距離125米的C點處有一消防隊.在聽力考試期間,消防隊突然接到報警電話,告知在位于C點北偏東75°方向的F點突發(fā)火災,消防隊必須立即趕往救火,已知消防車的警報聲傳播半徑為100米,若消防車的警報聲對聽力測試造成影響,則消防車必須改道行駛.試問:消防車是否需要改道行駛?說明理由.取1.732

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校為了增強學生體質,決定開設以下體育課外活動項目:A.籃球 B.乒乓球C.羽毛球 D.足球,為了解學生最喜歡哪一種活動項目,隨機抽取了部分學生進行調查,并將調查結果繪制成了兩幅不完整的統(tǒng)計圖,

請回答下列問題:

1)這次被調查的學生共有多少人?

2)請你將條形統(tǒng)計圖(2)補充完整;

3)在平時的乒乓球項目訓練中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,現(xiàn)決定從這四名同學中任選兩名參加乒乓球比賽,求恰好選中甲、乙兩位同學的概率(用樹狀圖或列表法解答)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】邊長為2的正方形OABC在平面直角坐標系中的位置如圖所示,點D是邊OA的中點,連接CD,點E在第一象限,且DEDC,DE=DC.以直線AB為對稱軸的拋物線過C,E兩點.

(1)求拋物線的解析式;

(2)點P從點C出發(fā),沿射線CB每秒1個單位長度的速度運動,運動時間為t秒.過點P作PFCD于點F,當t為何值時,以點P,F(xiàn),D為頂點的三角形與COD相似?

(3)點M為直線AB上一動點,點N為拋物線上一動點,是否存在點M,N,使得以點M,N,D,E為頂點的四邊形是平行四邊形?若存在,請直接寫出滿足條件的點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)觀察下列各式:

……試用你發(fā)現(xiàn)的規(guī)律填空: ,

2)請你用含有一個字母的等式將上面各式呈現(xiàn)的規(guī)律表示出來,并用所學數(shù)學知識說明你所寫式子的正確性。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知∠A=D=90°,點EF在線段BC上,DEAF交于點O,且AB=DC,BE=CF.求證:

1AF=DE

2)若OPEF,求證:OP平分∠EOF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD、DEFG都是正方形,邊長分別為mnmn).坐標原點OAD的中點,AD、Ey軸上.若二次函數(shù)yax2的圖象過C、F兩點,則_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一次函數(shù)y=k1x+b與反比例函數(shù)y=的圖象交于第一象限內的P(,8),Q(4,m)兩點,與x軸交于A點.

(1)分別求出這兩個函數(shù)的表達式;

(2)寫出點P關于原點的對稱點P'的坐標;

(3)求P'AO的正弦值.

查看答案和解析>>

同步練習冊答案