【題目】如圖,點(diǎn)E是正方形ABCD的邊BC延長線上一點(diǎn),連接DE,過頂點(diǎn)B作BF⊥DE,垂足為F,BF交邊DC于點(diǎn)G.
(1)求證:DGBC=DFBG;
(2)連接CF,求∠CFB的大;
(3)作點(diǎn)C關(guān)于直線DE的對(duì)稱點(diǎn)H,連接CH,FH.猜想線段DF,BF,CH之間的數(shù)量關(guān)系并加以證明.
【答案】(1)見解析;(2)∠CFB=45°;(3)BF=CH+DF,理由見解析.
【解析】
(1)根據(jù)正方形的性質(zhì)得到∠BCD=90°,證明∠BGC=∠DGF,得到△BGC∽△DGF,根據(jù)相似三角形的性質(zhì)證明結(jié)論;
(2)連接BD,證明△BGC∽△DGF,根據(jù)相似三角形的性質(zhì)得到∠BDG=∠CFG,根據(jù)正方形的性質(zhì)解答;
(3)在線段FB上截取FM,使得FM=FD,連接DM,證明△BDM∽△CDF,得到BM=CF,根據(jù)等腰直角三角形的性質(zhì)得到CH=CF,證明結(jié)論.
(1)證明:∵四邊形ABCD是正方形,
∴∠BCD=90°,
∵BF⊥DE,
∴∠DFG=90°,
∴∠BCD=∠DFG,
∵∠BGC=∠DGF,
∴△BGC∽△DGF,
∴,
∴DGBC=DFBG;
(2)解:如圖1,連接BD,
∵△BGC∽△DGF,
∴,
∴,
∵∠BGD=∠CGF,
∴△BGD∽△CGF,
∴∠BDG=∠CFG,
∵四邊形ABCD是正方形,BD是對(duì)角線,
∴∠BDG=∠ADC=45°,
∴∠CFB=45°;
(3)解:BF=CH+DF,
理由如下:如圖2,在線段FB上截取FM,使得FM=FD,連接DM,
∵∠BFD=90°,
∴∠MDF=∠DMF=45°,DM=DF,
∵∠BDG=45°,
∴∠BDM=∠CDF,
∵△BGD∽△CGF,
∴∠GBD=∠DCF,
∴△BDM∽△CDF,
∴,
∴BM=CF,
∵∠CFB=45°,BF⊥DE,
點(diǎn)C關(guān)于直線DE的對(duì)稱點(diǎn)H,
∴∠EFH=∠EFC=45°,
∴∠CFH=90°,
∵CF=FH,
∴CH=CF,
∴BM=CH,
∴BF=BM+FM=CH+DF.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D是邊BC的中點(diǎn),DE⊥AC,垂足為點(diǎn) E.
(1)求證:DECD=ADCE;
(2)設(shè)F為DE的中點(diǎn),連接AF、BE,求證:AFBC=ADBE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在矩形ABCD中,AB<AD,對(duì)角線AC,BD相交于點(diǎn)O,動(dòng)點(diǎn)P由點(diǎn)A出發(fā),沿AB-BC→CD向點(diǎn)D運(yùn)動(dòng)設(shè)點(diǎn)P的運(yùn)動(dòng)路程為x,△AOP的面積為y,y與x的函數(shù)關(guān)系圖象如圖②所小示,則AD的長為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:拋物線y=(m-1)x2+mx+m2-4的圖象經(jīng)過原點(diǎn),且開口向上.
(1)確定的值;
(2)求此拋物線的頂點(diǎn)坐標(biāo);
(3)畫出拋物線的圖象,結(jié)合圖象回答:當(dāng)取什么值時(shí),隨的增大而增大?
(4)結(jié)合圖象直接回答:當(dāng)取什么值時(shí),?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于一個(gè)函數(shù),如果它的自變量 x 與函數(shù)值 y 滿足:當(dāng)1≤x≤1 時(shí),1≤y≤1,則稱這個(gè)函數(shù)為“閉 函數(shù)”.例如:y=x,y=x 均是“閉函數(shù)”. 已知 y ax2 bx c(a0) 是“閉函數(shù)”,且拋物線經(jīng)過點(diǎn) A(1,1)和點(diǎn) B(1,1),則 a 的取值范圍是______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某區(qū)教育系統(tǒng)為了更好地宣傳掃黑除惡專項(xiàng)斗爭,印制了應(yīng)知應(yīng)會(huì)手冊(cè),該區(qū)教育局想了解教師對(duì)掃黑除惡專項(xiàng)斗爭應(yīng)知應(yīng)會(huì)知識(shí)掌握程度,抽取了部分教師進(jìn)行了測試,并將測試成績繪制成下面兩幅統(tǒng)計(jì)圖,請(qǐng)根據(jù)統(tǒng)計(jì)圖中提供的信息,回答下面問題:
(1)計(jì)算樣本中,成績?yōu)?/span>98分的教師有 人,并補(bǔ)全兩個(gè)統(tǒng)計(jì)圖;
(2)樣本中,測試成績的眾數(shù)是 ,中位數(shù)是 ;
(3)若該區(qū)共有教師6880名,根據(jù)此次成績估計(jì)該區(qū)大約有多少名教師已全部掌握掃黑除惡專項(xiàng)斗爭應(yīng)知應(yīng)會(huì)知識(shí)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)在全校學(xué)生中開展了“地球—我們的家園”為主題的環(huán)保征文比賽,評(píng)選出一、二、三等獎(jiǎng)和優(yōu)秀獎(jiǎng)。根據(jù)獎(jiǎng)項(xiàng)的情況繪制成如圖所示的兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中提供的信息解答下列問題:
(1)求校獲獎(jiǎng)的總?cè)藬?shù),并把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)求在扇形統(tǒng)計(jì)圖中表示“二等獎(jiǎng)” 的扇形的圓心角的度數(shù);
(3)獲得一等獎(jiǎng)的4名學(xué)生中有3男1女,現(xiàn)打算從中隨機(jī)選出2名學(xué)生參加頒獎(jiǎng)活動(dòng),請(qǐng)用列表或畫樹狀圖的方法求選出的2名學(xué)生恰好是1男1女的概率﹒
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等邊△ABC的邊長為8,以AB為直徑的圓交BC于點(diǎn)F.以C為圓心,CF長為半徑作圖,D是⊙C上一動(dòng)點(diǎn),E為BD的中點(diǎn),當(dāng)AE最大時(shí),BD的長為( 。
A. B. C. D. 12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】智能手機(jī)如果安裝了一款測量軟件“SmartMeasure”后,就可以測量物高、寬度和面積等.如圖,打開軟件后將手機(jī)攝像頭的屏幕準(zhǔn)星對(duì)準(zhǔn)腳部按鍵,再對(duì)準(zhǔn)頭部按鍵,即可測量出人體的高度.其數(shù)學(xué)原理如圖②所示,測量者AB與被測量者CD都垂直于地面BC.若手機(jī)顯示AC=1m,AD=1.8m,∠CAD=60°,求此時(shí)CD的高.(結(jié)果保留根號(hào))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com