【題目】如圖,在△ABC中,AB=AC,D是邊BC的中點,DE⊥AC,垂足為點 E.
(1)求證:DECD=ADCE;
(2)設(shè)F為DE的中點,連接AF、BE,求證:AFBC=ADBE.
【答案】(1)證明見解析;(2)證明見解析.
【解析】
(1)由AB=AC,D是邊BC的中點,利用等腰三角形的性質(zhì)可得出∠ADC=90°,由同角的余角相等可得出∠ADE=∠DCE,結(jié)合∠AED=∠DEC=90°可證出△AED∽△DEC,再利用相似三角形的性質(zhì)可證出DECD=ADCE;
(2)利用等腰三角形的性質(zhì)及中點的定義可得出CD=BC,DE=2DF,結(jié)合DECD=ADCE可得出,結(jié)合∠BCE=∠ADF可證出△BCE∽△ADF,再利用相似三角形的性質(zhì)可證出AFBC=ADBE.
(1)∵AB=AC,D是邊BC的中點,
∴AD⊥BC,
∴∠ADC=90°,
∴∠ADE+∠CDE=90°.
∵DE⊥AC,
∴∠CED=90°,
∴∠CDE+∠DCE=90°,
∴∠ADE=∠DCE.
又∵∠AED=∠DEC=90°,
∴△AED∽△DEC,
∴,
∴DECD=ADCE;
(2)∵AB=AC,
∴BD=CD=BC,
∵F為DE的中點,
∴DE=2DF.
∵DECD=ADCE,
∴2DFBC=ADCE,
∴,
又∵∠BCE=∠ADF,
∴△BCE∽△ADF,
∴,
∴AFBC=ADBE.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】菱形ABCD中, ,其周長為32,則菱形面積為____________.
【答案】
【解析】分析:根據(jù)菱形的性質(zhì)易得AB=BC=CD=DA=8,AC⊥BD, OA=OC,OB=OD,再判定△ABD為等邊三角形,根據(jù)等邊三角形的性質(zhì)可得AB=BD=8,從而得OB=4,在Rt△AOB中,根據(jù)勾股定理可得OA=4,繼而求得AC=2AO=,再由菱形的面積公式即可求得菱形ABCD的面積.
詳解:∵菱形ABCD中,其周長為32,
∴AB=BC=CD=DA=8,AC⊥BD, OA=OC,OB=OD,
∵,
∴△ABD為等邊三角形,
∴AB=BD=8,
∴OB=4,
在Rt△AOB中,OB=4,AB=8,
根據(jù)勾股定理可得OA=4,
∴AC=2AO=,
∴菱形ABCD的面積為: =.
點睛:本題考查了菱形性質(zhì):1.菱形的四個邊都相等;2.菱形對角線相互垂直平分,并且每一組對角線平分一組對角;3.菱形面積公式=對角線乘積的一半.
【題型】填空題
【結(jié)束】
17
【題目】如圖,在△ABC中, , AC=BC=3, 將△ABC折疊,使點A落在BC 邊上的點D處,EF為折痕,若AE=2,則的值為_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】心理學(xué)家發(fā)現(xiàn):課堂上,學(xué)生對概念的接受能力s與提出概念的時間t(單位:min)之間近似滿足函數(shù)關(guān)系s=at2+bt+c(a≠0),s值越大,表示接受能力越強(qiáng).如圖記錄了學(xué)生學(xué)習(xí)某概念時t與s的三組數(shù)據(jù),根據(jù)上述函數(shù)模型和數(shù)據(jù),可推斷出當(dāng)學(xué)生接受能力最強(qiáng)時,提出概念的時間為( 。
A. 8min B. 13min C. 20min D. 25min
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)在利用描點法畫二次函數(shù)y=ax2+bx+c(a=0)的圖象時,先取自變量x的一些值,計算出相應(yīng)的函數(shù)值y,如下表所示:
x | … | 0 | 1 | 2 | 3 | 4 | … |
y | … | ﹣3 | 0 | ﹣1 | 0 | ﹣3 | … |
接著,他在描點時發(fā)現(xiàn),表格中有一組數(shù)據(jù)計算錯誤,他計算錯誤的一組數(shù)據(jù)是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知梯形中,,,,,是邊上一點,過、分別作、的平行線交于點,聯(lián)結(jié)并延長,與射線交于點.
(1)當(dāng)點與點重合時,求的值;
(2)當(dāng)點在邊.上時,設(shè),求的面積;(用含的代數(shù)式表示)
(3)當(dāng)時,求的余弦值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在方格紙中(每個小方格紙的邊長都是1個單位).
(1)請在方格紙上建立平面直角坐標(biāo)系,使,,并求出點B的坐標(biāo);
(2)以原點O為位似中心,相似比為2,在第一象限內(nèi)將放大,畫出放大后的圖形;
(3)計算的面積S.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
在數(shù)學(xué)課上,老師提出如下問題:
尺規(guī)作圖:作Rt△ABC,使其斜邊AB=c,一條直角邊BC=a.
已知線段a,c如圖.
小蕓的作法如下:
① 取AB=c,作AB的垂直平分線交AB于點O; ② 以點O為圓心,OB長為半徑畫圓;
③ 以點B為圓心,a長為半徑畫弧,與⊙O交于點C;④ 連接BC,AC.
則Rt△ABC即為所求.老師說:“小蕓的作法正確.”
請回答:小蕓的作法中判斷∠ACB是直角的依據(jù)是________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)計算:(3﹣π)0﹣+|3﹣|+(tan30°)﹣1
(2)定義新運算:對于任意實數(shù)a,b,都有a⊕b=a(a﹣b)+1,等式右邊是通常的加法、減法及乘法運算.比如:2⊕5=2×(2﹣5)+1
=2×(﹣3)+1
=﹣6+1
=﹣5
若3⊕x的值小于13,求x的取值范圍,并在如圖所示的數(shù)軸上表示出來.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點E是正方形ABCD的邊BC延長線上一點,連接DE,過頂點B作BF⊥DE,垂足為F,BF交邊DC于點G.
(1)求證:DGBC=DFBG;
(2)連接CF,求∠CFB的大;
(3)作點C關(guān)于直線DE的對稱點H,連接CH,FH.猜想線段DF,BF,CH之間的數(shù)量關(guān)系并加以證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com