【題目】已知直線L:y=3x+2,現(xiàn)有下列命題:
①過點P(-1,1)與直線L平行的直線是y=3x+4;②若直線L與x軸、y軸分別交于A、B兩點,則AB=;③若點M(-,1),N(a,b)都在直線L上,且a>-,則b>1; ④若點Q到兩坐標軸的距離相等,且Q在L上,則點Q在第一或第二象限。其中正確的命題是_________.
【答案】①②③.
【解析】
由于k相等,只需判斷點P是否在直線y=3x+4上即可判斷①;先確定點A、B的坐標,再根據勾股定理可求得AB的長,即可判斷②;根據一次函數(shù)的增減性可對③進行判斷;解y=3x+4與y=x或y=-x所組成的方程組,可求得Q點的坐標,即可對④進行判斷.
解:當x=-1時,y=3×(-1)+4=1,所以過點P(-1,1)與直線L平行的直線是y=3x+4,所以①正確;
對于直線L:y=3x+2,當 時,,解得,當 時,,所以A點坐標為(,0),B點坐標為(0,2),所以AB=,所以②正確;
對于y=3x+2,∵k=3>0,∴y隨x的增大而增大,所以當時,b>1,所以③正確;
解方程組,得,解方程組,得,即Q點的坐標為(-1,-1)或( ),所以④錯誤.
故答案為①②③.
科目:初中數(shù)學 來源: 題型:
【題目】按要求畫圖,并解答問題
(1)如圖,取BC邊的中點D,畫射線AD;
(2)分別過點B、C畫BE⊥AD于點E,CF⊥AD于點F;
(3)BE和CF的位置關系是 ;通過度量猜想BE和CF的數(shù)量關系是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,E是AD的中點,延長CE,BA交于點F,連接AC,DF.
(1)求證:四邊形ACDF是平行四邊形;
(2)當CF平分∠BCD時,寫出BC與CD的數(shù)量關系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,李強在教學樓的點P處觀察對面的辦公大樓,為了求得對面辦公大樓的高度,李強測得辦公大樓頂部點A的仰角為30°,測得辦公大樓底部點B的俯角為37°,已知測量點P到對面辦公大樓上部AD的距離PM為30m,辦公大樓平臺CD=10m.求辦公大樓的高度(結果保留整數(shù)).(參考數(shù)據:sin37°≈,tan37°≈,≈1.73)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題提出:某段樓梯共有10個臺階,如果某同學在上臺階時,可以一步1個臺階,也可以一步2個臺階.那么該同學從該段樓梯底部上到頂部共有多少種不同的走法?
問題探究:
為解決上述實際問題,我們先建立如下數(shù)學模型:
如圖①,用若干個邊長都為1的正方形(記為1×1矩形)和若干個邊長分別為1和2的矩形(記為1×2矩形),要拼成一個如圖②中邊長分別為1和n的矩形(記為1×矩形),有多少種不同的拼法?(設表示不同拼法的個數(shù))
為解決上述數(shù)學模型問題,我們采取的策略和方法是:一般問題特殊化.
探究一:先從最特殊的情形入手,即要拼成一個1×1矩形,有多少種不同拼法?
顯然,只有1種拼法,如圖③,即=1種.
探究二:要拼成一個1×2矩形,有多少種不同拼法?
可以看出,有2種拼法,如圖④,即=2種.
探究三:要拼成一個1×3矩形,有多少種不同拼法?
拼圖方法可分為兩類:一類是在圖④這2種1×2矩形上方,各拼上一個1×1矩形,即這類拼法共有=2種;另一類是在圖③這1種1×1矩形上方拼上一個1×2矩形,即這類拼法有=1種.如圖⑤,即=+= 2+1=3(種).
探究四:仿照上述探究過程,要拼成一個1×4矩形,有多少種不同拼法?請畫示意圖說明并求出結果.
探究五:要拼成一個1×5矩形,仿照上述探究過程,得出= 種不同拼法.
(直接寫出結果,不需畫圖).
問題解決:請你根據上述中的數(shù)學模型,解答“問題提出”中的實際問題.
(寫出解答過程,不需畫圖).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】觀察下列等式:
(x-1)(x+1)=x2-1;
(x-1)(x2+x+1)=x3-1
(x-1)(x3+x2+x+1)=x4-1
(x-1)(x4+x3+x2+x+1)=x5-1;
……
(1)猜想(x-1)(xn+xn-1+xn-2+…+x+1)=______.
運用上述規(guī)律,試求:
(2)219+218+217+…+23+22+2+1.
(3)52018+52017+52016+…+53+52+5+1.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某種型號汽車油箱容量為40L,每行駛100km耗油10L.設一輛加滿油的該型號汽車行駛路程為x(km),行駛過程中油箱內剩余油量為y(L)
(1)求y與x之間的函數(shù)表達式;
(2)為了有效延長汽車使用壽命,廠家建議每次加油時油箱內剩余油量不低于油箱容量的四分之一,按此建議,求該輛汽車最多行駛的路程.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠AGF=∠ABC,∠1+∠2=180°.
(1)試判斷BF與DE的位置關系,并說明理由;
(2)若BF⊥AC,∠2=150°,求∠AFG的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com