【題目】如圖,李強在教學(xué)樓的點P處觀察對面的辦公大樓,為了求得對面辦公大樓的高度,李強測得辦公大樓頂部點A的仰角為30°,測得辦公大樓底部點B的俯角為37°,已知測量點P到對面辦公大樓上部AD的距離PM為30m,辦公大樓平臺CD=10m.求辦公大樓的高度(結(jié)果保留整數(shù)).(參考數(shù)據(jù):sin37°≈,tan37°≈,≈1.73)
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,圖形ABCD是由兩個二次函數(shù)y1=kx2+m(k<0)與y2=ax2+b(a>0)的部分圖象圍成的封閉圖形.已知A(1,0)、B(0,1)、D(0,﹣3).
(1)直接寫出這兩個二次函數(shù)的表達(dá)式;
(2)判斷圖形ABCD是否存在內(nèi)接正方形(正方形的四個頂點在圖形ABCD上),并說明理由;
(3)如圖2,連接BC,CD,AD,在坐標(biāo)平面內(nèi),求使得△BDC與△ADE相似(其中點C與點E是對應(yīng)頂點)的點E的坐標(biāo)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知頂點為(﹣3,﹣6)的拋物線y=ax2+bx+c經(jīng)過點(﹣1,﹣4),則下列結(jié)論中錯誤的是( )
A. b2>4ac
B. ax2+bx+c≥﹣6
C. 若點(﹣2,m),(﹣5,n)在拋物線上,則m>n
D. 關(guān)于x的一元二次方程ax2+bx+c=﹣4的兩根為﹣5和﹣1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線L:y=3x+2,現(xiàn)有下列命題:
①過點P(-1,1)與直線L平行的直線是y=3x+4;②若直線L與x軸、y軸分別交于A、B兩點,則AB=;③若點M(-,1),N(a,b)都在直線L上,且a>-,則b>1; ④若點Q到兩坐標(biāo)軸的距離相等,且Q在L上,則點Q在第一或第二象限。其中正確的命題是_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)平面上有四個點A,B,C,D,按照以下要求作圖:
①作直線AD;
②作射線CB交直線AD于點E;
③連接AC,BD交于點F;
(2)圖中共有 條線段;
(3)若圖中F是AC的一個三等分點,AF<FC,已知線段AC上所有線段之和為18,求AF長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】推理探索:(1)數(shù)軸上點、、、、 分別表示數(shù)0、 2 、3、5、 4 ,解答下列問題.
①畫出數(shù)軸表示出點、、、、;
②、兩點之間的距離是 ;
③、 兩點之間的距離是 ;
④、 兩點之間的距離是 ;
(2)請思考,若點表示數(shù) 且,點 表示數(shù),且 ,則用含 , 的代數(shù)式表示 、兩點 間的距離是 ;
(3)請歸納,若點 表示數(shù),點 表示數(shù),則 、 兩點間的距離用含、的代數(shù)式表示是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC的三個頂點坐標(biāo)分別為A(﹣1,﹣2),B(﹣1,﹣4),C(2,﹣3).
(1)將△ABC先向右平移4個單位,再向上平移6個單位,得到△A1B1C1,作出△A1B1C1,線段AC在平移過程中掃的面積為 ;
(2)作出△A1B1C1關(guān)于y軸對稱的圖形△A2B2C2,則坐標(biāo)C2為 ;
(3)若△ABD與△ABC全等,則點D的坐標(biāo)為 (點C與點D不重合)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com