【題目】問題提出:某段樓梯共有10個(gè)臺階,如果某同學(xué)在上臺階時(shí),可以一步1個(gè)臺階,也可以一步2個(gè)臺階.那么該同學(xué)從該段樓梯底部上到頂部共有多少種不同的走法?
問題探究:
為解決上述實(shí)際問題,我們先建立如下數(shù)學(xué)模型:
如圖①,用若干個(gè)邊長都為1的正方形(記為1×1矩形)和若干個(gè)邊長分別為1和2的矩形(記為1×2矩形),要拼成一個(gè)如圖②中邊長分別為1和n的矩形(記為1×矩形),有多少種不同的拼法?(設(shè)表示不同拼法的個(gè)數(shù))
為解決上述數(shù)學(xué)模型問題,我們采取的策略和方法是:一般問題特殊化.
探究一:先從最特殊的情形入手,即要拼成一個(gè)1×1矩形,有多少種不同拼法?
顯然,只有1種拼法,如圖③,即=1種.
探究二:要拼成一個(gè)1×2矩形,有多少種不同拼法?
可以看出,有2種拼法,如圖④,即=2種.
探究三:要拼成一個(gè)1×3矩形,有多少種不同拼法?
拼圖方法可分為兩類:一類是在圖④這2種1×2矩形上方,各拼上一個(gè)1×1矩形,即這類拼法共有=2種;另一類是在圖③這1種1×1矩形上方拼上一個(gè)1×2矩形,即這類拼法有=1種.如圖⑤,即=+= 2+1=3(種).
探究四:仿照上述探究過程,要拼成一個(gè)1×4矩形,有多少種不同拼法?請畫示意圖說明并求出結(jié)果.
探究五:要拼成一個(gè)1×5矩形,仿照上述探究過程,得出= 種不同拼法.
(直接寫出結(jié)果,不需畫圖).
問題解決:請你根據(jù)上述中的數(shù)學(xué)模型,解答“問題提出”中的實(shí)際問題.
(寫出解答過程,不需畫圖).
【答案】探究四:5; 探究五:8,89
【解析】根據(jù)圖形中矩形組合規(guī)律得出A1×5=A1×3+A1×4,A1×n=A1×(n﹣1)+A1×(n﹣2),進(jìn)而求出即可.
探究四:
拼圖方法可分為兩類:一類是在圖④這2種1×2矩形上方,各拼上一個(gè)1×2矩形,即這類拼法共有A1×2 =2種;另一類是在圖⑤這3種1×3矩形上方,各拼上一個(gè)1×1矩形,即這類拼法共有A1×3 =3種.如上圖,即A1×4 =+=3+2=5(種).
探究五:∵A1×4=A1×2+A1×3=5,A1×5=A1×3+A1×4=3+5=8,∴要拼成一個(gè)1×5矩形,有8種不同拼法A1×5.
故答案為:8.
問題解決:∵樓梯共有10個(gè)臺階,如果某同學(xué)在上臺階時(shí),可以一步1個(gè)臺階,也可以一步2個(gè)臺階∴A1×1=1種,即A1×3=A1×2+A1×1=2+1=3(種),A1×4=A1×3+A1×2=3+2=5(種),A1×5=8(種),∴A1×6=A1×4+A1×5=5+8=13,A1×7=A1×6+A1×5=13+8=21,∴A1×8=A1×6+A1×7=13+21=34,∴A1×9=A1×7+A1×8=21+34=55,∴A1×10=A1×8+A1×9=34+55=89.
答:該同學(xué)從該段樓梯底部上到頂部共有89種不同的走法.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx(a≠0) 交x軸正半軸于點(diǎn)A,直線y=2x 經(jīng)過拋物線的頂點(diǎn)M.已知該拋物線的對稱軸為直線x=2,交x軸于點(diǎn)B.
(1)求a,b的值;
(2)P是第一象限內(nèi)拋物線上的一點(diǎn),且在對稱軸的右側(cè),連接OP,BP.設(shè)點(diǎn)P的橫坐標(biāo)為m ,△OBP的面積為S,.求K關(guān)于m 的函數(shù)表達(dá)式及K的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線的解析式為,直線的解析式為,與軸,軸分別交于點(diǎn),點(diǎn),直線與交于點(diǎn).
(1)求點(diǎn),點(diǎn),點(diǎn)的坐標(biāo),并求出的面積;
(2)若直線 上存在點(diǎn)(不與重合),滿足,請求出點(diǎn)的坐標(biāo);
(3)在軸右側(cè)有一動直線平行于軸,分別與,交于點(diǎn),且點(diǎn)在點(diǎn)的下方,軸上是否存在點(diǎn),使為等腰直角三角形?若存在,請直接寫出滿足條件的點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了參加學(xué)校舉行的傳統(tǒng)文化知識競賽,某班進(jìn)行了四次模擬訓(xùn)練,將成績優(yōu)秀的人數(shù)和優(yōu)秀率繪制成如下兩個(gè)不完整的統(tǒng)計(jì)圖:
(1)求該班總?cè)藬?shù);
(2)根據(jù)計(jì)算,請你補(bǔ)全兩個(gè)統(tǒng)計(jì)圖;
(3)已知該班甲同學(xué)四次訓(xùn)練成績?yōu)?/span>85,95,85,95,乙同學(xué)四次成績分別為85,90,95,90,現(xiàn)需從甲、乙兩同學(xué)中選派一名同學(xué)參加校級比賽,你認(rèn)為應(yīng)該選派哪位同學(xué)并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線L:y=3x+2,現(xiàn)有下列命題:
①過點(diǎn)P(-1,1)與直線L平行的直線是y=3x+4;②若直線L與x軸、y軸分別交于A、B兩點(diǎn),則AB=;③若點(diǎn)M(-,1),N(a,b)都在直線L上,且a>-,則b>1; ④若點(diǎn)Q到兩坐標(biāo)軸的距離相等,且Q在L上,則點(diǎn)Q在第一或第二象限。其中正確的命題是_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,折線ABC是在某市乘出租車所付車費(fèi)y(元)與行車?yán)锍?/span>x(km)之間的函數(shù)關(guān)系圖象.
(1)根據(jù)圖象,求當(dāng)x≥3時(shí)的函數(shù)關(guān)系式;
(2)某人乘坐2.5km,應(yīng)付多少錢?
(3)某人乘坐13km,應(yīng)付多少錢?
(4)若某人付車費(fèi)30.8元,出租車行駛了多少路程?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線,相交于點(diǎn),平分.
(1)若,,求的度數(shù);
(2)若平分,,設(shè).
①求證;
②求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,AB=AC,D是BC的中點(diǎn),點(diǎn)E在AD上.
(1)求證:BE=CE;
(2)如圖2,若BE的延長線交AC于點(diǎn)F,且BF⊥AC,垂足為F,∠BAC=45°,原題設(shè)其他條件不變.求證:EF=CF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,已知點(diǎn)A(﹣3,3),B(﹣5,1),C(﹣2,0),P(a,b)是△ABC的邊AC上任意一點(diǎn),△ABC經(jīng)過平移后得到△A1B1C1,點(diǎn)P的對應(yīng)點(diǎn)為P1(a+6,b﹣2).
(1)平移后的三個(gè)頂點(diǎn)坐標(biāo)分別為:.A1( ),B1( ),C1( ).
(2)在上圖中畫出平移后三角形A1B1C1;
(3)畫出△AOA1并求出△AOA1的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com