【題目】“五一”前夕,某經(jīng)銷(xiāo)商計(jì)劃花23500元購(gòu)買(mǎi)A、BC三種新款時(shí)裝共50套進(jìn)行試銷(xiāo),并且購(gòu)進(jìn)的C種時(shí)裝套數(shù)不少于B種時(shí)裝套數(shù),且不超過(guò)A種時(shí)裝套數(shù),設(shè)購(gòu)進(jìn)A種時(shí)裝x套,B種時(shí)裝y套,三種時(shí)裝的進(jìn)價(jià)和售價(jià)如下表所示.

型號(hào)

A

B

C

進(jìn)價(jià)(元/套)

400

550

500

售價(jià)(元/套)

500

700

650

1)求yx之間的函數(shù)關(guān)系式;

2)滿足條件的進(jìn)貨方案有哪幾種?寫(xiě)出解答過(guò)程;

3)假設(shè)所購(gòu)進(jìn)的這三種時(shí)裝能全部賣(mài)出,且在購(gòu)銷(xiāo)這批時(shí)裝的過(guò)程中需要另外支出各種費(fèi)用1000元.通過(guò)計(jì)算判斷哪種進(jìn)貨方案利潤(rùn)最大.

【答案】1y=2x30;(2)有三種進(jìn)貨方案:方案一:進(jìn)A20套,B10套,C20套;方案二:進(jìn)A21套,B12套,C17套;方案三:進(jìn)A22套,B14套,C14套;(3)按(2)中方案一進(jìn)貨利潤(rùn)最大.

【解析】

1)根據(jù)題意可得購(gòu)進(jìn)C種時(shí)裝(50xy)套,利用“經(jīng)銷(xiāo)商計(jì)劃花23500元購(gòu)買(mǎi)A、BC三種新款時(shí)裝”進(jìn)一步列出化簡(jiǎn)即可;

2)根據(jù)題意求出符合題意得x的范圍,進(jìn)而求出方案;

3)根據(jù)圖表求出利潤(rùn)關(guān)于x的解析式,然后利用函數(shù)的增減性進(jìn)一步判斷即可.

1)由題意知,購(gòu)進(jìn)C種時(shí)裝(50xy)套,

400x+550y+500(50xy)=23500

整理,得y=2x30,

2)由(1)知50xy=50x(2x30)=3x+80

根據(jù)題意,得:

20≤x≤22

x為整數(shù),∴x可取202122,∴有三種進(jìn)貨方案

方案一:進(jìn)A20套,B10套,C20套;

方案二:進(jìn)A21套,B12套,C17套;

方案三:進(jìn)A22套,B14套,C14套,

3)設(shè)利潤(rùn)為w元,則

w=500x+700(2x30)+650(3x+80)235001000=50x+6500

∵﹣500,

wx的增大而減小,

∴當(dāng)x=20時(shí)w最大,

∴按(2)中方案一進(jìn)貨利潤(rùn)最大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一輛轎車(chē)從甲地駛往乙地,到達(dá)乙地后返回甲地,速度是原來(lái)的1.5倍,共用t小時(shí);一輛貨車(chē)同時(shí)從甲地駛往乙地,到達(dá)乙地后停止.兩車(chē)同時(shí)出發(fā),勻速行駛.設(shè)轎車(chē)行駛的時(shí)間為xh),兩車(chē)到甲地的距離為ykm),兩車(chē)行駛過(guò)程中yx之間的函數(shù)圖象如圖.

1)求轎車(chē)從乙地返回甲地時(shí)的速度和t的值;

2)求轎車(chē)從乙地返回甲地時(shí)yx之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;

3)直接寫(xiě)出轎車(chē)從乙地返回甲地時(shí)與貨車(chē)相遇的時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)y1kx+bk≠0)和反比例函數(shù)的圖象相交于點(diǎn)A(﹣4,2),Bn,﹣4

1)求一次函數(shù)和反比例函數(shù)的表達(dá)式;

2)觀察圖象,直接寫(xiě)出不等式y1y2的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知一條直線過(guò)點(diǎn)(0,4),且與拋物線y=x2交于A,B兩點(diǎn),其中點(diǎn)A的橫坐標(biāo)是-2.

(1)求這條直線的解析式及點(diǎn)B的坐標(biāo);

(2)在x軸上是否存在點(diǎn)C,使得△ABC是直角三角形?若存在,求出點(diǎn)C的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由;

(3)過(guò)線段AB上一點(diǎn)P,作PM∥x軸,交拋物線于點(diǎn)M,點(diǎn)M在第一象限,點(diǎn)N(0,1),當(dāng)點(diǎn)M的橫坐標(biāo)為何值時(shí),MN+3MP的長(zhǎng)度最大?最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,有以下結(jié)論:

a+b+c0;ab+c1abc0;④9a3b+c0ca1.其中所有正確結(jié)論的序號(hào)是(  )

A.①②B.①③④C.①②③④D.①②③④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)小風(fēng)箏與一個(gè)大風(fēng)等形狀完全相同,它們的形狀如圖所示,其中對(duì)角線ACBD.已知它們的對(duì)應(yīng)邊之比為13,小風(fēng)箏兩條對(duì)角線的長(zhǎng)分別為12cm14cm

1)小風(fēng)箏的面積是多少?

2)如果在大風(fēng)箏內(nèi)裝設(shè)一個(gè)連接對(duì)角頂點(diǎn)的十字交叉形的支撐架,那么至少需用多長(zhǎng)的材料?(不記損耗)

3)大風(fēng)箏要用彩色紙覆蓋,而彩色紙是從一張剛好覆蓋整個(gè)風(fēng)箏的矩形彩色紙(如圖中虛線所示)裁剪下來(lái)的,那么從四個(gè)角裁剪下來(lái)廢棄不用的彩色紙的面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們約定:體重在選定標(biāo)準(zhǔn)的%(包含)范圍之內(nèi)時(shí)都稱(chēng)為一般體重.為了解某校七年級(jí)男生中具有一般體重的人數(shù),我們從該校七年級(jí)男生中隨機(jī)選出10名男生,測(cè)量出他們的體重(單位:kg),收集并整理得到如下統(tǒng)計(jì)表:

男生序號(hào)

體重kg

45

62

55

58

67

80

53

65

60

55

根據(jù)以上表格信息解決如下問(wèn)題:

1)將這組數(shù)據(jù)的三個(gè)統(tǒng)計(jì)量:平均數(shù)、中位數(shù)和眾數(shù)填入下表:

平均數(shù)

中位數(shù)

眾數(shù)

2)請(qǐng)你選擇其中一個(gè)統(tǒng)計(jì)量作為選定標(biāo)準(zhǔn),說(shuō)明選擇的理由.并按此選定標(biāo)準(zhǔn)找出這10名男生中具有一般體重的男生.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,一枚質(zhì)地均勻的骰子,骰子有六個(gè)面并分別標(biāo)有數(shù)字12,3,4,5,6.如圖2,有,,,,,,7個(gè)圈,相鄰兩個(gè)圈間距相等.跳圈游戲的規(guī)則為:游戲者每擲一次骰子,骰子向上的一面上的數(shù)字是幾,就從圈開(kāi)始向前連續(xù)跳幾個(gè)間距.如:從圈起跳,第一次擲得3,就連續(xù)跳3個(gè)間距,跳到圈;若第二次擲得3,就從開(kāi)始連續(xù)跳3個(gè)間距,跳到圈;若第二次擲得4,就從圈開(kāi)始連續(xù)跳4個(gè)間距,跳到圈后返回到圈;…設(shè)游戲者從圈起跳.

1)小明隨機(jī)擲一次骰子,求跳到圈的概率;

2)小亮隨機(jī)擲兩次骰子,用列表法或畫(huà)樹(shù)狀圖法求最后跳到圈的概率,并指出他與小明跳到圈的可能性一樣嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)ab為常數(shù),且)與反比例函數(shù)m為常數(shù),且)的圖象交于點(diǎn)A﹣2,1)、B1,n).

1)求反比例函數(shù)和一次函數(shù)的解析式;

2)連結(jié)OAOB,求△AOB的面積;

3)直接寫(xiě)出當(dāng)時(shí),自變量x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案