【題目】a是不為1的有理數(shù),我們把 稱為a的差倒數(shù).如:2的差倒數(shù)是=1,1的差倒數(shù)是.已知a1=,a2a1的差倒數(shù),a3a2的差倒數(shù),a4a3的差倒數(shù),,依此類推.

1)分別求出a2a3,a4的值;

2)求a1+a2+a3+…+a3600的值.

【答案】1a2=,a3=4a4=; 25300

【解析】試題分析:(1)根據(jù)差倒數(shù)的定義進行計算即可得解;

2)根據(jù)計算可知,每三個數(shù)為一個循環(huán)組循環(huán),求出每一個循環(huán)組的三個數(shù)的和,再用2160除以3求出正好有720個循環(huán)組,然后求解即可.

試題解析:1a1=

a2=,

a3==4

a4==;

2)根據(jù)(1)可知,每三個數(shù)為一個循環(huán)組循環(huán),

a1+a2+a3=3600÷3=1200,

a1+a2+a3+…+a3600=×1200=5300

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O中,點A為弧BC中點,BD為直徑,過AAPBCDB的延長線于點P.

(1)求證:PA是⊙O的切線;

(2)若BC=2,AB=2,求sinABD的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,過點A2,0)的兩條直線,分別交軸于BC,其中點B在原點上方,點C在原點下方,已知AB=.

1)求點B的坐標;

2)若△ABC的面積為4,求的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】12分)理數(shù)學興趣小組在探究如何求tan15°的值,經(jīng)過思考、討論、交流,得到以下思路:

思路一 如圖1,在RtABC中,C=90°,ABC=30°,延長CB至點D,使BD=BA,連接AD.設(shè)AC=1,則BD=BA=2,BC=tanD=tan15°===

思路二 利用科普書上的和(差)角正切公式:tanα±β=.假設(shè)α=60°,β=45°代入差角正切公式:tan15°=tan60°﹣45°===

思路三 在頂角為30°的等腰三角形中,作腰上的高也可以

思路四

請解決下列問題(上述思路僅供參考).

1)類比:求出tan75°的值;

2)應(yīng)用:如圖2,某電視塔建在一座小山上,山高BC30米,在地平面上有一點A,測得A,C兩點間距離為60米,從A測得電視塔的視角(∠CAD)為45°,求這座電視塔CD的高度;

3)拓展:如圖3,直線與雙曲線交于AB兩點,與y軸交于點C,將直線AB繞點C旋轉(zhuǎn)45°后,是否仍與雙曲線相交?若能,求出交點P的坐標;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+bx+c的圖象過A(2,0), B(0,﹣1)和C(4,5)三點.

(1)求二次函數(shù)的解析式;

(2)設(shè)二次函數(shù)的圖象與x軸的另一個交點為D,求點D的坐標;

(3)在同一坐標系中畫出直線y=x+1,并寫出當x在什么范圍內(nèi)時,一次函數(shù)的值大于二次函數(shù)的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲乙兩名同學做摸球游戲,他們把三個分別標有12,3的大小和形狀完全相同的小球放在一個不透明的口袋中.

1)求從袋中隨機摸出一球,標號是1的概率;

2)從袋中隨機摸出一球后放回,搖勻后再隨機摸出一球,若兩次摸出的球的標號之和為偶數(shù)時,則甲勝;若兩次摸出的球的標號之和為奇數(shù)時,則乙勝;試分析這個游戲是否公平?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖, ,矩形ABCD的頂點A、B分別在OM、ON上,當B在邊ON上運動時,A 隨之在邊OM上運動,矩形ABCD的形狀保持不變,其中AB=2,BC=1,則運動過程中,點C到點O的最大距離為___________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為鼓勵節(jié)約用水,某地推行階梯式水價計費制,標準如下:每月用水不超過17立方米的按每立方米元計費,超過17立方米而未超過30立方米的部分按每立方米元計費,超過30立方米的部分按每立方米元計費,某戶居民上月用水35立方米,應(yīng)繳水費_________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)學問題:計算等差數(shù)列52,﹣1,﹣4……前n項的和.

問題探究:為解決上面的問題,我們從最簡單的問題進行探究.

探究一:首先我們來認識什么是等差數(shù)列.

數(shù)學上,稱按一定順序排列的一列數(shù)為數(shù)列,其中排在第一位的數(shù)稱為第1項,用a1表示:排在第二位的數(shù)稱為第2項,用a2表示……排在第n位的數(shù)稱為第n項,用an表示.一般地,如果一個數(shù)列從第二項起,每一項與它的前一項的差都等于同一個常數(shù),那么這個數(shù)列叫做等差數(shù)列,這個常數(shù)叫等差數(shù)列的公差,公差通常用字母d表示.如:數(shù)列2,46,8,….為等差數(shù)列,其中a12,公差d2

1)已知等差數(shù)列52,﹣1,﹣4,…則這個數(shù)列的公差d   ,第5項是   

2)如果一個數(shù)列a1,a2,a3,a4,…是等差數(shù)列,且公差為d,那么根據(jù)定義可得到:

a2a1da3a2d,a4a3d,……anan1d,所以a2a1+d,a3a2+da1+2d,a4a1+3d,……:由此可得an   (用a1d的代數(shù)式表示)

3)對于等差數(shù)列5,2,﹣1,﹣4,…,an   請判斷﹣2020是否是此等差數(shù)列的某一項,若是,請求出是第幾項:若不是,說明理由.

探究二:二百多年前,數(shù)學王子高斯用他獨特的方法快速計算出1+2+3+4++100的值.我們從這個算法中受到啟發(fā),用此方法計算數(shù)列12,3,…,n的前n項和: 可知

4)請你仿照上面的探究方式,解決下面的問題:

a1,a2,a3,…,an為等差數(shù)列的前n項,前n項和Sna1+a2+a3++an.證明:Snna1+

5)計算:計算等差數(shù)列5,2,﹣1,﹣4…前n項的和Sn(寫出計算過程).

查看答案和解析>>

同步練習冊答案