【題目】如圖,四邊形ABCD中,∠BAD=90°,∠ABC+2∠BCD=180°,分別連接AC、BD,且∠BCD=2∠ADB,若AD=3,BC=5,則AC的長(zhǎng)度為_____.
【答案】
【解析】
延長(zhǎng)CD,交BA的延長(zhǎng)線于點(diǎn)E,分別過B,A作DE的垂線,垂足分別為F,H,推出BC=BE=5,設(shè)∠ADB=α,則∠BCD=∠E=2α,推出△EDB為等腰三角形,則DE=BE=5,△ADE為“345”直角三角形,通過∠E的正弦函數(shù)可分別把AH,BF的長(zhǎng)求出來,再利用勾股定理把EH,EF的長(zhǎng)度求出來,推出AH的長(zhǎng),在Rt△ACH中利用勾股定理即可求出AC的長(zhǎng).
解:如圖,延長(zhǎng)CD,交BA的延長(zhǎng)線于點(diǎn)E,分別過B,A作DE的垂線,垂足分別為F,H,
∵∠ABC+2∠BCD=180°,∠ABC+∠BCD+∠E=180°,
∴∠BCD=∠E,
∴BC=BE=5,
設(shè)∠ADB=α,則∠BCD=∠E=2α,
在Rt△BAD中,
∠ABD=90°﹣α,
∴在△BDE中,
∠BDE=180°﹣∠ABD﹣∠E
=180°﹣(90°﹣α)﹣2α
=90°﹣α,
∴∠ABD=∠BDE,
∴EB=ED=5,
∴在Rt△EDA中,
AE=
∵sin∠E=,
∴AH=,BF=3,
在Rt△BEF中,
EF=
∴CF=EF=4,EC=8,
在Rt△EHA中,
EH=
∴CH=EC﹣EH=,
在Rt△ACH中,
AC=
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中三頂點(diǎn)、、.
(1)將繞C點(diǎn)旋轉(zhuǎn)180°,得到,畫出圖形,寫出的坐標(biāo).
(2)平移得到,坐標(biāo)為,畫出圖形,指出平移規(guī)則.
(3)與是否具有旋轉(zhuǎn)關(guān)系?若有直接寫出旋轉(zhuǎn)中心P的坐標(biāo)及旋轉(zhuǎn)角度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2016年9月,某手機(jī)公司發(fā)布了新款智能手機(jī),為了調(diào)查某小區(qū)業(yè)主對(duì)該款手機(jī)的購(gòu)買意向,該公司在某小區(qū)隨機(jī)對(duì)部分業(yè)主進(jìn)行了問卷調(diào)查,規(guī)定每人只能從A類(立刻去搶購(gòu))、B類(降價(jià)后再去買)、C類(猶豫中)、D類(肯定不買)這四類中選一類,并制成了以下兩幅不完整的統(tǒng)計(jì)圖,由圖中所給出的信息解答下列問題:
(1)扇形統(tǒng)計(jì)圖中B類對(duì)應(yīng)的百分比為 %,請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(2)若該小區(qū)共有4000人,請(qǐng)你估計(jì)該小區(qū)大約有多少人立刻去搶購(gòu)該款手機(jī).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知y=﹣x(x+3﹣a)+1是關(guān)于x的二次函數(shù),當(dāng)1≤x≤5時(shí),如果y在x=1時(shí)取得最小值,則實(shí)數(shù)a的取值范圍是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用適當(dāng)?shù)姆椒ń庀铝蟹匠?/span>
(1)x2﹣1=4(x+1)
(2)3x2﹣6x+2=0
(3)5x2+3x=0
(4)(2x+3)2﹣25=0;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖直線y=kx+k交x軸負(fù)半軸于點(diǎn)A,交y軸正半軸于點(diǎn)B,且AB=2
(1)求k的值;
(2)點(diǎn)P從A出發(fā),以每秒1個(gè)單位的速度沿射線AB運(yùn)動(dòng),過點(diǎn)P作直線AB的垂線交x軸于點(diǎn)Q,連接OP,設(shè)△PQO的面積為S,點(diǎn)P運(yùn)動(dòng)時(shí)間為t,求S與t的函數(shù)關(guān)系式,并直接寫出t的取值范圍;
(3)在(2)的條件下,當(dāng)P在AB的延長(zhǎng)線上,若OQ+AB=(BQ﹣OP),求此時(shí)直線PQ的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,對(duì)稱軸為直線的拋物線與x軸相交于A、B兩點(diǎn),其中A點(diǎn)的坐標(biāo)為(-3,0)。
(1)求點(diǎn)B的坐標(biāo);
(2)已知,C為拋物線與y軸的交點(diǎn)。
①若點(diǎn)P在拋物線上,且,求點(diǎn)P的坐標(biāo);
②設(shè)點(diǎn)Q是線段AC上的動(dòng)點(diǎn),作QD⊥x軸交拋物線于點(diǎn)D,求線段QD長(zhǎng)度的最大值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=1,BC=7,將矩形ABCD繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°得到矩形A′B′CD′,點(diǎn)E、F分別是BD、B′D′的中點(diǎn),則EF的長(zhǎng)度為________cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】北京時(shí)間2019年3月10日0時(shí)28分,我國(guó)在西昌衛(wèi)星發(fā)射中心用長(zhǎng)征三號(hào)乙運(yùn)載火箭,成功將中星衛(wèi)星發(fā)射升空,衛(wèi)星進(jìn)入預(yù)定軌道.如圖,火星從地面處發(fā)射,當(dāng)火箭達(dá)到點(diǎn)時(shí),從位于地面雷達(dá)站處測(cè)得的距離是,仰角為;1秒后火箭到達(dá)點(diǎn),測(cè)得的仰角為.(參考數(shù)據(jù):sin42.4°≈0.67,cos42.4°≈0.74,tan42.4°≈0.905,sin45.5°≈0.71,cos45.5°≈0.70,tan45.5°≈1.02)
(Ⅰ)求發(fā)射臺(tái)與雷達(dá)站之間的距離;
(Ⅱ)求這枚火箭從到的平均速度是多少(結(jié)果精確到0.01)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com