【題目】已知:A÷).

1)化簡A

2)當x2+y213,xy=﹣6時,求A的值;

3)若|xy|+0,A的值是否存在,若存在,求出A的值,若不存在,說明理由.

【答案】1;(2;(3不存在,理由見解析

【解析】

1)先把括號里面的通分,再除法即可;

2)利用完全平方公式,求出xy的值,代入化簡后的A中,求值即可;

3)利用非負數(shù)的和為0,確定x、y的關(guān)系,把x、y代入A的分母,判斷A的值是否存在.

解:(1A÷

=﹣

=﹣

2x2+y213,xy=﹣6

xy2x22xy+y2

13+1225

xy±5

xy5時,A=﹣;

xy=﹣5時,A

3∵|xy|+0,|xy|≥0,≥0,

xy0,y+20

xy0時,

A的分母為0,分式?jīng)]有意義.

所以當|xy|+0,A的值是不存在.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在等腰Rt△ABCBAC=90°,EAC上(且不與點AC重合.在ABC的外部作等腰Rt△CED,使CED=90°,連接AD,分別以ABAD為鄰邊作平行四邊形ABFD,連接AF

1求證AEF是等腰直角三角形;

2如圖2,CED繞點C逆時針旋轉(zhuǎn),當點E在線段BC上時,連接AE求證AF=AE;

3如圖3,CED繞點C繼續(xù)逆時針旋轉(zhuǎn)當平行四邊形ABFD為菱形,CEDABC的下方時AB=2,CE=2,求線段AE的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,分別以點A和點B為圓心,大于AB的長為半徑畫弧,兩弧相交于點M,N,作直線MN,交BC于點D,連接AD.若ADC的周長為10,AB=7,則ABC的周長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=x2,以D(﹣2,1)為直角頂點作該拋物線的內(nèi)接RtADB(即A.D.B均在拋物線上).直線AB必經(jīng)過一定點,則該定點坐標為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,DBC邊上的一點,ABDBBE平分∠ABC,交AC邊于點E,連接DE

1)求證:AEDE;

2)若∠A100°,∠C50°,求∠AEB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:四邊形ABCD中,對角線BD平分∠ABC,∠ACB74°,∠ABC46°,且∠BAD+CAD180°,那么∠BDC的度數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1ABC中,CDABC的中線,點ECD上,且∠AED=∠BCD

1)求證:AEBC

2)如圖2,連接BE,若ABAC2DE,∠CBE14°,則∠ACD的度數(shù)為   (直接寫出結(jié)果),

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】冬至是一年中太陽光照射最少的日子,如果此時樓房最低層能采到陽光,一年四季整座樓均能受到陽光照射,所以冬至是選房買房時確定陽光照射的最好時機.吳江某居民小區(qū)有一朝向為正南方向的居民樓.該居民樓的一樓是高為米的小區(qū)超市,超市以上是居民住房,現(xiàn)計劃在該樓前面米處蓋一棟新樓,已知吳江地區(qū)冬至正午的陽光與水平線夾角大約為.(參考數(shù)據(jù)在,

中午時,若要使得超市采光不受影響,則新樓的高度不能超過多少米?(結(jié)果保留整數(shù))

若新建的大樓高米,則中午時,超市以上的居民住房采光是否受影響,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形ABCD中,AB3BC4,點EBC邊上一點,連接AE,把∠B沿AE折疊,使點B落在點B′處,當△CEB′為直角三角形時,BE的長為( )

A. 3 B. C. 23 D. 3

查看答案和解析>>

同步練習(xí)冊答案