【題目】矩形ABCD中,AB=3,BC=4,點(diǎn)E是BC邊上一點(diǎn),連接AE,把∠B沿AE折疊,使點(diǎn)B落在點(diǎn)B′處,當(dāng)△CEB′為直角三角形時(shí),BE的長(zhǎng)為( )
A. 3 B. C. 2或3 D. 3或
【答案】D
【解析】
當(dāng)△CEB′為直角三角形時(shí),有兩種情況:
①當(dāng)點(diǎn)B′落在矩形內(nèi)部時(shí),如圖1所示.
連結(jié)AC,先利用勾股定理計(jì)算出AC=5,根據(jù)折疊的性質(zhì)得∠AB′E=∠B=90°,而當(dāng)△CEB′為直角三角形時(shí),只能得到∠EB′C=90°,所以點(diǎn)A、B′、C共線,即∠B沿AE折疊,使點(diǎn)B落在對(duì)角線AC上的點(diǎn)B′處,則EB=EB′,AB=AB′=3,可計(jì)算出CB′=2,設(shè)BE=x,則EB′=x,CE=4-x,然后在Rt△CEB′中運(yùn)用勾股定理可計(jì)算出x.
②當(dāng)點(diǎn)B′落在AD邊上時(shí),如圖2所示.此時(shí)ABEB′為正方形.
當(dāng)△CEB′為直角三角形時(shí),有兩種情況:
①當(dāng)點(diǎn)B′落在矩形內(nèi)部時(shí),如圖1所示.
連結(jié)AC,
在Rt△ABC中,AB=3,BC=4,
∴AC==5,
∵∠B沿AE折疊,使點(diǎn)B落在點(diǎn)B′處,
∴∠AB′E=∠B=90°,
當(dāng)△CEB′為直角三角形時(shí),只能得到∠EB′C=90°,
∴點(diǎn)A、B′、C共線,即∠B沿AE折疊,使點(diǎn)B落在對(duì)角線AC上的點(diǎn)B′處,
∴EB=EB′,AB=AB′=3,
∴CB′=5-3=2,
設(shè)BE=x,則EB′=x,CE=4-x,
在Rt△CEB′中,
∵EB′2+CB′2=CE2,
∴x2+22=(4-x)2,解得x=,
∴BE=;
②當(dāng)點(diǎn)B′落在AD邊上時(shí),如圖2所示.
此時(shí)ABEB′為正方形,
∴BE=AB=3.
綜上所述,BE的長(zhǎng)為或3.
故選D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】嘉淇同學(xué)要證明命題“兩組對(duì)邊分別相等的四邊形是平行四邊形”是正確的,她先用尺規(guī)作出了如圖1的四邊形ABCD,并寫(xiě)出了如下不完整的已知和求證.
已知:如圖1,在四邊形ABCD中,BC=AD,AB=
求證:四邊形ABCD是 四邊形.
(1)在方框中填空,以補(bǔ)全已知和求證;
(2)按嘉淇同學(xué)的思路寫(xiě)出證明過(guò)程;
(3)用文字?jǐn)⑹鏊C命題的逆命題.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校數(shù)學(xué)研究小組在研究有關(guān)二次函數(shù)及其圖象性質(zhì)時(shí),發(fā)現(xiàn)了一個(gè)重要結(jié)論:拋物線y=ax2+2x+3(a≠0),當(dāng)實(shí)數(shù)a變化時(shí),它們的頂點(diǎn)都在某條直線上.
(1)請(qǐng)你協(xié)助探求出這條直線的表達(dá)式;
(2)問(wèn)題(1)中的直線上有一個(gè)點(diǎn)不是該拋物線的頂點(diǎn),你能找出它嗎?并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】五一小長(zhǎng)假的某一天,亮亮全家上午時(shí)自駕小汽車(chē)從家里出發(fā),到某旅游景點(diǎn)游玩,該小汽車(chē)離家的距離(千米)與時(shí)間(時(shí))之間的關(guān)系如圖所示,根據(jù)圖像提供的有關(guān)信息,判斷下列說(shuō)法錯(cuò)誤的是( )
A.景點(diǎn)離亮亮的家千米
B.亮亮到家的時(shí)間為時(shí)
C.小汽車(chē)返程的速度為千米/時(shí)
D.時(shí)至時(shí),小汽車(chē)勻速行駛
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1),已知小正方形 ABCD 的面積為1,把它的各邊延長(zhǎng)一倍得到新正方形 A 1 B 1 C 1 D 1 ;把正方形 A 1 B 1 C 1 D 1 邊長(zhǎng)按原法延長(zhǎng)一倍得到正方形 A 2 B 2 C 2 D 2 (如圖(2));以此下去,則正方形 A n B n C n D n 的面積為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正方形ABCD中,AC是對(duì)角線,今有較大的直角三角板,一邊始終經(jīng)過(guò)點(diǎn)B,直角頂點(diǎn)P在射線AC上移動(dòng),另一邊交DC于點(diǎn)Q.
(1)如圖①,當(dāng)點(diǎn)Q在DC邊上時(shí),猜想并寫(xiě)出PB與PQ所滿(mǎn)足的數(shù)量關(guān)系,并加以證明;
(2)如圖②,當(dāng)點(diǎn)Q落在DC的延長(zhǎng)線上時(shí),猜想并寫(xiě)出PB與PQ滿(mǎn)足的數(shù)量關(guān)系,并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系中,矩形ABCO的邊OA在x軸上,邊OC在y軸上,點(diǎn)B的坐標(biāo)為(1,3),將矩形沿對(duì)角線AC翻折,B點(diǎn)落在D點(diǎn)的位置,且AD交y軸于點(diǎn)E.那么點(diǎn)E的坐標(biāo)_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校有名學(xué)生,為了解全校學(xué)生的上學(xué)方式,該校數(shù)學(xué)興趣小組在全校隨機(jī)抽取了名學(xué)生進(jìn)行抽樣調(diào)查,整理樣本數(shù)據(jù),得到下列圖表(頻數(shù)分布表中部分劃記被污染漬蓋住):
(1) ;
(2)求扇形統(tǒng)計(jì)圖中,乘私家車(chē)部分對(duì)應(yīng)的圓心角的度數(shù);
(3)請(qǐng)估計(jì)該校名學(xué)生中,選擇騎車(chē)和步行上學(xué)的一共有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】直角梯形中,,,,,.為⊙的直徑,動(dòng)點(diǎn)沿方向從點(diǎn)開(kāi)始向點(diǎn)以的速度運(yùn)動(dòng),動(dòng)點(diǎn)沿方向從點(diǎn)開(kāi)始向點(diǎn)以的速度運(yùn)動(dòng),點(diǎn)、分別從、兩點(diǎn)同時(shí)出發(fā),當(dāng)其中一點(diǎn)停止時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng).
()求⊙的直徑.
()當(dāng)為何值時(shí),四邊形為等腰梯形?
()是否存在某一時(shí)刻,使直線與⊙相切?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com