精英家教網 > 初中數學 > 題目詳情

【題目】如圖,AB是⊙O的直徑,AP是⊙O的切線,A是切點,BP與⊙O交于點C,點D為AP的中點,連結AC.求證:
(1)∠P=∠BAC
(2)直線CD是⊙O的切線.

【答案】
(1)解:證明:∵AB是⊙O的直徑,

∴∠ACB=90°,

∴∠ACP=90°,

∴∠P+∠CAP=90°,

∵AP⊙O是切線,

∴∠BAP=90°,

即∠CAP+∠BAC=90°

∴∠P=∠BAC;


(2)解:∵CD是Rt△PAC斜邊PA的中線,

∴CD=AD,

∴∠DCA=∠DAC,

連接OC,

∵OC=OA,

∴∠OCA=∠OAC,

∴∠DCO=∠DAO=90°,

∴CD是⊙O的切線.


【解析】(1)要證明∠P=∠BAC,只要證明∠CAP+∠BAC=∠P+∠CAP即可,根據題目中的條件可以證明它們相等,從而可以解答本題;(2)要證明直線CD是⊙O的切線,只要證明∠OCD=90°即可,根據題目中的條件和(1)中的結論可以證明∠OCD=90°,從而可以解答本題.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知二次函數y=x2+bx+c的圖象過點A(﹣3,0)和點B(1,0),且與y軸交于點C,D點在拋物線上且橫坐標是﹣2.

(1)求拋物線的解析式;
(2)拋物線的對稱軸上有一動點P,求出PA+PD的最小值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,銳角△ABC內接于⊙O,點D在⊙O外(與點C在AB同側),∠ABD=90°,下列結論:①sinC>sinD;②cosC>cosD;③tanC>tanD,正確的結論為(
A.①②
B.②③
C.①②③
D.①③

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,正方形ABCD中,AB=6,點E在邊AB上,且BE=2AE.將△ADE沿ED對折至△FDE,延長EF交邊BC于點G,連結DG,BF.下列結論:①△DCG≌△DFG;②BG=GC;③DG∥BF;④SBFG=3.其中正確的結論是(填寫序號)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知拋物線經過點A(﹣1,0),B(3,0),C(1,4),與y軸交于點E.
(1)求拋物線的解析式
(2)點F在第三象限的拋物線上,且SBEF=15,求點F的坐標

(3)點P是x軸上一個動點,過P作直線l∥AE交拋物線于點Q,若以A,P,Q,E為頂點的四邊形是平行四邊形,請直接寫出符合條件的點Q的坐標;如果沒有,請通過計算說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,反比例函數y= 的圖象與一次函數y= x的圖象交于點A、B,點B的橫坐標是4.點P是第一象限內反比例函數圖象上的動點,且在直線AB的上方.

(1)若點P的坐標是(1,4),直接寫出k的值和△PAB的面積;
(2)設直線PA、PB與x軸分別交于點M、N,求證:△PMN是等腰三角形;
(3)設點Q是反比例函數圖象上位于P、B之間的動點(與點P、B不重合),連接AQ、BQ,比較∠PAQ與∠PBQ的大小,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,某建筑物AC頂部有一旗桿AB,且點A,B,C在同一條直線上,小明在地面D處觀測旗桿頂端B的仰角為30°,然后他正對建筑物的方向前進了20米到達地面的E處,又測得旗桿頂端B的仰角為60°,已知建筑物的高度AC=12m,求旗桿AB的高度(結果精確到0.1米).參考數據: ≈1.73, ≈1.41.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】我州某養(yǎng)殖場計劃購買甲、乙兩種魚苗600條,甲種魚苗每條16元,乙種魚苗每條20元,相關資料表明:甲、乙兩種魚苗的成活率為80%,90%
(1)若購買這兩種魚苗共用去11000元,則甲、乙兩種魚苗各購買多少條?
(2)若要使這批魚苗的總成活率不低于85%,則乙種魚苗至少購買多少條?
(3)在(2)的條件下,應如何選購魚苗,使購買魚苗的總費用最低?最低費用是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】愛好思考的小茜在探究兩條直線的位置關系查閱資料時,發(fā)現了“中垂三角形”,即兩條中線互相垂直的三角形稱為“中垂三角形”.如圖(1)、圖(2)、圖(3)中,AM、BN是△ABC的中線,AN⊥BN于點P,像△ABC這樣的三角形均為“中垂三角形”.設BC=a,AC=b,AB=c.
【特例探究】

(1)如圖1,當tan∠PAB=1,c=4 時,a= , b=;
如圖2,當∠PAB=30°,c=2時,a= , b=
(2)【歸納證明】請你觀察(1)中的計算結果,猜想a2、b2、c2三者之間的關系,用等式表示出來,并利用圖3證明你的結論.
(3)【拓展證明】如圖4,ABCD中,E、F分別是AD、BC的三等分點,且AD=3AE,BC=3BF,連接AF、BE、CE,且BE⊥CE于E,AF與BE相交點G,AD=3 ,AB=3,求AF的長.

查看答案和解析>>

同步練習冊答案