【題目】如圖,足球場上守門員在O處開出一高球,球從離地面1m的A處飛出(A在y軸上),運動員乙在距O點6m的B處發(fā)現(xiàn)球在自己頭的正上方達到最高點M,距地面約4m高.球第一次落地后又彈起.據(jù)試驗,足球在草坪上彈起后的拋物線與原來的拋物線形狀相同,最大高度減少到原來最大高度的一半.
(1)求足球開始飛出到第一次落地時,該拋物線的表達式;
(2)運動員乙要搶到第二個落點D,他應(yīng)再向前跑多少米?(取, )
【答案】(1) ;(2)17米.
【解析】試題分析:(1)依題意代入x的值可得拋物線的表達式.
(2)先求出OC的長,根據(jù)圖示可得第二次足球彈出后的距離為CD,相當(dāng)于將拋物線AEMFC向下平移了2個單位可得2=-(x-6)2解得x的值即可知道CD、BD.
試題解析:(1)如圖,設(shè)足球開始飛出到第一次落地時,
拋物線的表達式為y=a(x-h)2+k,
∵h=6,k=4,
∴y=a(x-6)2+4,
由已知:當(dāng)x=0時y=1,
即1=36a+4,
∴a=-,
∴表達式為y=-(x-6)2+4=-x2+x+1;
(2)令y=0,-(x-6)2+4=0,
∴(x-6)2=48,
解得:x1=+6≈13,x2=-+6<0(舍去),
∴OC≈13,
如圖,第二次足球彈出后的距離為CD,
根據(jù)題意:CD=EF(即相當(dāng)于將拋物線AEMFC向下平移了2個單位),
∴2=-(x-6)2+4,解得:x1=6- ,x2=6+,
∴CD=|x1-x2|=≈10,
∴BD=13-6+10=17(米).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店決定購進A、B兩種紀念品.若購進A種紀念品10件,B種紀念品5件,需要1000元;若購進A種紀念品5件,B種紀念品3件,需要550元.
(1)求購進A、B兩種紀念品每件各需多少元?
(2)若該商店決定拿出1萬元全部用來購進這兩種紀念品,考慮到市場需求,要求購進A種紀念品的數(shù)量不少于B種紀念品數(shù)量的6倍,且不超過B種紀念品數(shù)量的8倍,那么該商店共有幾種進貨方案?
(3)若銷售每件A種紀念品可獲利潤20元,每件B 種紀念品可獲利潤30元,在(2)的各種進貨方案中,哪一種方案獲利最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為的正方形四個角上,分別剪去大小相等的等腰直角三角形,當(dāng)三角形的直角邊由小變大時,陰影部分的面積也隨之發(fā)生變化,它們的變化情況如下:
三角形的直角邊長/ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
陰影部分的面積/ | 398 | 392 | 382 | 368 | 350 | 302 | 272 | 200 |
(1)在這個變化過程中,自變量、因變量各是什么?
(2)請將上述表格補充完整;
(3)當(dāng)?shù)妊苯侨切蔚闹苯沁呴L由增加到時,陰影部分的面積是怎樣變化的?
(4)設(shè)等腰直角三角形的直角邊長為,圖中陰影部分的面積為,寫出與的關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與軸、軸分別交于兩點,于點,點為直線上不與點重合的一個動點.
(1)求線段的長;
(2)當(dāng)的面積是6時,求點的坐標;
(3)在軸上是否存在點,使得以、、為頂點的三角形與全等,若存在,請直接寫出所有符合條件的點的坐標,否則,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某政府部門進行公務(wù)員招聘考試,其中三人中錄取一人,他們的成績?nèi)缦拢?/span>
人 | 測試成績 | ||
題目 | 甲 | 乙 | 丙 |
文化課知識 | 74 | 87 | 69 |
面試 | 58 | 74 | 70 |
平時表現(xiàn) | 87 | 43 | 65 |
(1)按照平均成績甲、乙、丙誰應(yīng)被錄取?
(2)若按照文化課知識、面試、平時表現(xiàn)的成績已4:3:1的比例錄取,甲、乙、丙誰應(yīng)被錄取?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A,B(-1,2)是一次函數(shù)與反比例函數(shù)
()圖象的兩個交點,AC⊥x軸于C,BD⊥y軸于D.
(1)根據(jù)圖象直接回答:在第二象限內(nèi),當(dāng)x取何值時,一次函數(shù)大于反比例函數(shù)的值?
(2)求一次函數(shù)解析式及m的值;
(3)P是線段AB上的一點,連接PC,PD,若△PCA和△PDB面積相等,求點P坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知n邊形的內(nèi)角和θ=(n-2)×180°.
(1)甲同學(xué)說,θ能取360°;而乙同學(xué)說,θ也能取630°.甲、乙的說法對嗎?若對,求出邊數(shù)n.若不對,說明理由;
(2)若n邊形變?yōu)?/span>(n+x)邊形,發(fā)現(xiàn)內(nèi)角和增加了360°,用列方程的方法確定x.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點P是正方形ABCD的對角線BD上一點,PE⊥BC于點E,PF⊥CD于點F,連接EF給出下列五個結(jié)論:①AP=EF;②△APD一定是等腰三角形;③AP⊥EF;④PD=EF.其中正確結(jié)論的番號是( )
A.①③④B.①②③C.①③D.①②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一輛汽車往返于甲、乙兩地之間,如果汽車以50千米/時的平均速度從甲地出發(fā),則經(jīng)過6小時可到達乙地.
(1)甲、乙兩地相距多少千米?
(2)如果汽車把速度提高到 v(千米/時),那么從甲地到乙地所用時間 t(小時)將怎樣變化?
(3)寫出 t與 v之間的函數(shù)關(guān)系式;
(4)因某種原因,這輛汽車需在5小時內(nèi)從甲地到達乙地,則此時汽車的平均速度至少應(yīng)是多少?
(5)已知汽車的平均速度最大可達80千米/時,那么它從甲地到乙地最快需要多長時間?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com