【題目】如圖1,在一張ABCD的紙片中,ABCD的面積為6,DC=3,∠BCD=45°,點(diǎn)P是BD上的一動(dòng)點(diǎn)(點(diǎn)P與點(diǎn)B,D不重合).現(xiàn)將這張紙片分別沿BD,AP剪成三塊,并按圖2(注:圖2中的①,②是將圖1中的①,②翻轉(zhuǎn)背面朝上,再拼接而成的)所示放置
(1)當(dāng)點(diǎn)P是BD的中點(diǎn)時(shí),求AP的長.
(2)試探究:當(dāng)點(diǎn)P在BD的什么位置上時(shí),MN的長最�。空埱蟪鲞@個(gè)最小值.
【答案】(1);(2)當(dāng)AP⊥BD時(shí),MN的長最小,
【解析】
(1)連接AC交BD于P,根據(jù)平行四邊形的性質(zhì)得到PD=PB,即點(diǎn)P是BD的中點(diǎn),過D作DH⊥AB于H,PE⊥AB于E,根據(jù)三角形的中位線的性質(zhì)得到PE=DH,BE=BH,根據(jù)已知條件得到DH=2,解直角三角形即可得到結(jié)論;
(2)由題意得,CM=CN=AP,∠MCD=∠PAB,∠NCB=∠PAD,于是得到∠MCN=90°,當(dāng)AP⊥BD時(shí),MN的長最小,過D作DH⊥AB于H,根據(jù)勾股定理得到BD==,根據(jù)三角形的面積公式得到AP=,根據(jù)勾股定理即可得到結(jié)論.
解:(1)連接AC交BD于P,
∵四邊形ABCD是平行四邊形,
∴PD=PB,即點(diǎn)P是BD的中點(diǎn),
過D作DH⊥AB于H,PE⊥AB于E,
∴PE∥DH,
∴PE=DH,BE=BH,
∵ABCD的面積為6,DC=3,
∴DH=2,
∴PE=1,
∵∠BCD=45°,
∴∠DAB=45°,
∴AH=DH=2,
∴BH=1,
∴HE=BE=,
∴AE=,
∴AP==;
(2)由題意得,CM=CN=AP,∠MCD=∠PAB,∠NCB=∠PAD,
∴∠MCD+∠NCB=45°,
∴∠MCN=90°,
當(dāng)AP⊥BD時(shí),MN的長最小,
過D作DH⊥AB于H,
由(1)求得DH=2,BH=1
∴BD== ,
∵AP⊥BD,
∴S△ABD=ABDH=BDAP,
∴AP=,
∴CM=CN=AP=,
∴MN==,
∴MN長的最小值是.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=x+3與x軸、y軸分別相交于A、C兩點(diǎn),過點(diǎn)B(6,0),E(0,﹣6)的直線上有一點(diǎn)P,滿足∠PCA=135°.
(1)求證:四邊形ACPB是平行四邊形;
(2)求直線BE的解析式及點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為迎接“五一”國際勞動(dòng)節(jié),某商場計(jì)劃購進(jìn)甲、乙兩種品牌的恤衫共100件,已知乙品牌每件的進(jìn)價(jià)比甲品牌每件的進(jìn)價(jià)貴30元,且用120元購買甲品牌的件數(shù)恰好是購買乙品牌件數(shù)的2倍.
(1)求甲、乙兩種品牌每件的進(jìn)價(jià)分別是多少元?
(2)商場決定甲品牌以每件50元出售,乙品牌以每件100元出售.為滿足市場需求,購進(jìn)甲種品牌的數(shù)量不少于乙種品牌數(shù)量的4倍,請你確定獲利最大的進(jìn)貨方案,并求出最大利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年4月,國民體質(zhì)監(jiān)測中心等機(jī)構(gòu)開展了青少年形體測評.專家組隨機(jī)抽查了某市若干名初中學(xué)生坐姿、站姿、走姿的好壞情況.我們對專家的測評數(shù)據(jù)作了適當(dāng)處理(如果一個(gè)學(xué)生有一種以上不良姿勢,我們以他最突出的一種作記載),并將統(tǒng)計(jì)結(jié)果繪制了如下兩幅不完整的統(tǒng)計(jì)圖,請你根據(jù)圖中所給信息解答下列問:
(1)在這次形體測評中,一共抽查了____________名學(xué)生;
(2)請將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)如果全市有1萬名初中生,那么全市初中生中,坐姿不良的學(xué)生約有____________人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一塊余料ABCD,AD∥BC,現(xiàn)進(jìn)行如下操作:以點(diǎn)B為圓心,適當(dāng)長為半徑畫弧,分別交BA,BC于點(diǎn)G,H;再分別以點(diǎn)G,H為圓心,大于GH的長為半徑畫弧,兩弧在∠ABC內(nèi)部相交于點(diǎn)O,畫射線BO,交AD于點(diǎn)E.
(1)求證:AB=AE;
(2)若∠A=100°,求∠EBC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在2019年植樹節(jié)這一天,某校組織300名七年級學(xué)生,200名八年級學(xué)生,100名九年級學(xué)生參加義務(wù)植樹活動(dòng).圖甲是根據(jù)植樹情況繪制成的條形統(tǒng)計(jì)圖.
請根據(jù)題中提供的信息解答下列問題.
(1)參加植樹的學(xué)生平均每人植樹多少棵?
(2)圖2是小明同學(xué)尚未完成的各年級植樹情況的扇形統(tǒng)計(jì)圖,請你把它補(bǔ)充完整(要求標(biāo)注圓心角度數(shù));
(3)若該種樹苗在正常情況下的成活率為85%,則今后還需補(bǔ)種多少棵樹?(補(bǔ)種樹苗的成活率也為85%)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形ABCD沿AF折疊,使點(diǎn)D落在BC邊的點(diǎn)E處,過點(diǎn)E作EG∥CD交AF于點(diǎn)G,連接DG.
(1)求證:四邊形EFDG是菱形;
(2)求證:EG2=GFAF;
(3)若AB=4,BC=5,求GF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知點(diǎn)A,對點(diǎn)A作如下變換:
第一步:作點(diǎn)A關(guān)于x軸的對稱點(diǎn)A1;第二步:以O為位似中心,作線段OA1的位似圖形OA2,且相似比=q,則稱A2是點(diǎn)A的對稱位似點(diǎn).
(1)若A(2,3),q=2,直接寫出點(diǎn)A的對稱位似點(diǎn)的坐標(biāo);
(2)已知直線l:y=kx-2,拋物線C:y=-x2+mx-2(m>0).點(diǎn)N(,2k-2)在直線l上.
①當(dāng)k=時(shí),判斷E(1,-1)是否是點(diǎn)N的對稱位似點(diǎn),請說明理由;
②若直線l與拋物線C交于點(diǎn)M(x1,y1)(x1≠0),且點(diǎn)M不是拋物線的頂點(diǎn),則點(diǎn)M的對稱位似點(diǎn)是否可能仍在拋物線C上?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了美化城市環(huán)境,某街道重修了路面,準(zhǔn)備將老舊的路燈換成LED太陽能路燈,計(jì)劃購買海螺臂和A字臂兩種型號的太陽能路燈共100只,經(jīng)過市場調(diào)查:購買海螺臂太陽能路燈1只,A字臂太陽能路燈2只共需2300元;購買海螺臂太陽能路燈3只,A字臂太陽能路燈4只共需5400元.
(1)求海螺臂太陽能路燈和A字臂太陽能路燈的單價(jià):
(2)在實(shí)際購買時(shí),恰逢商家活動(dòng),購買海螺臂太陽能路燈超過20只時(shí),超過的部分打九折優(yōu)惠,A字臂太陽能路燈全部打八折優(yōu)惠;若規(guī)定購買的海螺臂太陽能路燈的數(shù)量不少于A字臂太陽能路燈的數(shù)量的一半,請你設(shè)計(jì)一種購買方案,使得總費(fèi)用最少,并求出最小總費(fèi)用.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com