【題目】如圖,已知:AD平分∠CAE,AD∥BC.
(1)求證:△ABC是等腰三角形.
(2)當∠CAE等于多少度時△ABC是等邊三角形?證明你的結(jié)論.

【答案】
(1)證明:∵AD平分∠CAE,

∴∠EAD=∠CAD,

∵AD∥BC,

∴∠EAD=∠B,∠CAD=∠C,

∴∠B=∠C,

∴AB=AC.

故△ABC是等腰三角形


(2)解:當∠CAE=120°時△ABC是等邊三角形.

∵∠CAE=120°,AD平分∠CAE,

∴∠EAD=∠CAD=60°,

∵AD∥BC,

∴∠EAD=∠B=60°,∠CAD=∠C=60°,

∴∠B=∠C=60°,

∴△ABC是等邊三角形


【解析】(1)根據(jù)角平分線的定義可得∠EAD=∠CAD,再根據(jù)平行線的性質(zhì)可得∠EAD=∠B,∠CAD=∠C,然后求出∠B=∠C,再根據(jù)等角對等邊即可得證.(2)根據(jù)角平分線的定義可得∠EAD=∠CAD=60°,再根據(jù)平行線的性質(zhì)可得∠EAD=∠B=60°,∠CAD=∠C=60°,然后求出∠B=∠C=60°,即可證得△ABC是等邊三角形.
【考點精析】掌握等腰三角形的判定和等邊三角形的判定是解答本題的根本,需要知道如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(簡稱:等角對等邊).這個判定定理常用于證明同一個三角形中的邊相等;三個角都相等的三角形是等邊三角形;有一個角等于60°的等腰三角形是等邊三角形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】200粒大米重約4克,如果每人每天浪費1粒米,那么約458萬人口的漳州市每天浪費大米用科學記數(shù)法表示約為(  )

A.9.16×103B.9.16×104C.9,16×105D.0.916×105

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算
(1)3a-(5a-2b)+3(2a-b)
(2)先化簡,再求值。4( -2)-2x,其中x=-2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若點P(2m+4,3m+3)在x軸上,則點P的坐標為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小馬自駕私家車從A地到B地,駕駛原來的燃油汽車所需的油費108元,駕駛新購買的純電動汽車所需電費27元.已知行駛1千米,原來燃油汽車所需的油費比新購買的純電動汽車所需的電費多0.54元,求新購買的純電動汽車每行駛1千米所需的電費.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列計算正確的是(
A.x3?x4=x12
B.(x33=x6
C.2x2+x=x
D.(3x)2=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,AD平分∠BAC,AB=AC,連結(jié)BD、CD并延長分別交AC、AB于F、E點,則此圖中全等三角形的對數(shù)為(
A.2對
B.3對
C.4對
D.5對

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場銷售A,B兩種品牌的教學設備,這兩種教學設備的進價和售價如表所示:

A

B

進價(萬元/套)

1.5

1.2

售價(萬元/套)

1.65

1.4

該商場計劃購進兩種教學設備若干套,共需66萬元,全部銷售后可獲毛利潤9萬元.[毛利潤=(售價﹣進價)×銷售量]
(1)該商場計劃購進A,B兩種品牌的教學設備各多少套?
(2)通過市場調(diào)研,該商場決定在原計劃的基礎上,減少A種設備的購進數(shù)量,增加B種設備的購進數(shù)量,已知B種設備增加的數(shù)量是A種設備減少的數(shù)量的1.5倍.若用于購進這兩種教學設備的總資金不超過69萬元,問A種設備購進數(shù)量至多減少多少套?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,DE∥BC,∠D:∠DBC=2:1,∠1=∠2,求∠DEB的度數(shù).

查看答案和解析>>

同步練習冊答案