【題目】如圖,邊長為1的正方形ABCD繞點A順時針旋轉30°到AB′C′D′的位置,則圖中陰影部分的面積為( )
A.B.C.D.
【答案】C
【解析】
設D′C′與BC的交點為E,連接AE,利用“HL”證明Rt△AD′E和Rt△ABE全等,根據(jù)全等三角形對應角相等∠BAE=∠D′AE,再根據(jù)旋轉角求出∠BAD′=60°,然后求出∠BAE=30°,再解直角三角形求出BE,然后根據(jù)陰影部分的面積=正方形ABCD的面積-四邊形ABED′的面積,列式計算即可得解.
解:如圖,D′C′與BC的交點為E,連接AE,
在Rt△AD′E和Rt△ABE中,
∵,
∴Rt△AD′E≌Rt△ABE(HL),
∴∠BAE=∠D′AE,
∵旋轉角為30°,
∴∠BAD′=60°,
∴∠BAE=×60°=30°,
∴BE=1×=,
∴陰影部分的面積=1×12×(×1×)=1.
故選:C.
科目:初中數(shù)學 來源: 題型:
【題目】已知一次函數(shù).回答下列問題:
(1)求出它的圖像與坐標軸的交點坐標;
(2)當自變量滿足什么條件時?函數(shù)值?
(3)當自變量時,則函數(shù)值的范圍?
(4)在所給的直角坐標系中,畫出直線的圖像.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=-x+10與x軸、y軸分別交于點B,C,點A的坐標為(8,0),P(x,y)是直線y=-x+10在第一象限內(nèi)的一個動點.
(1)求△OPA的面積S與x的函數(shù)解析式,并寫出自變量x的取值范圍;
(2)過點P作PE⊥x軸于點E,作PF⊥y軸于點F,連接EF,是否存在一點P使得EF的長最小,若存在,求出EF的最小值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一次函數(shù)y=ax+b(a≠0)、二次函數(shù)y=ax2+bx和反比例函數(shù)y=(k≠0)在同一直角坐標系中的圖象如圖所示,A點的坐標為(-2,0),則下列結論中,正確的是( 。
A.b=2a+k B.a(chǎn)=b+k C.a(chǎn)>b>0 D.a(chǎn)>k>0
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,C,E為⊙O上的兩點,AC平分∠EAB,CD⊥AE于D.
(1)求證:CD為⊙O的切線;
(2)過點C作CF⊥AB于F,如圖2,判斷CF和AF,DE之間的數(shù)量關系,并證明之;
(3)若AD-OA=1.5,AC=3,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一艘輪船以18海里/時的速度由西向東航行,在A處測得小島C在北偏東75°方向上,兩小時后,輪船在B處測得小島C在北偏東60°方向上,在小島周圍15海里處有暗礁,若輪船仍然按18海里/時的速度向東航行,請問是否有觸礁危險?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(6分)如圖①所示,將直尺擺放在三角板ABC上,使直尺與三角板的邊分別交于點D,E,F,G,量得∠CGD=42°。
(1)求∠CEF的度數(shù);
(2)將直尺向下平移,使直尺的邊緣通過三角板的頂點B,交AC邊于點H,如圖②所示.點H,B在直尺上的讀數(shù)分別為4,13.4,求BC的長(結果保留兩位小數(shù)).
(參考數(shù)據(jù):sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明與小亮玩游戲,如圖,兩組相同的卡片,每組三張,第一組卡片正面分別標有數(shù)字1,3,5;第二組卡片正面分別標有數(shù)字2,4,6.他們將卡片背面朝上,分組充分洗勻后,從每組卡片中各摸出一張,稱為一次游戲.當摸出的兩張卡片的正面數(shù)字之積小于10,則小明獲勝;當摸出的兩張卡片的正面數(shù)字之積超過10,則小亮獲勝.你認為這個游戲規(guī)則對雙方公平嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點E是矩形紙片的邊BC上的一動點,沿直線AE折疊紙片,點B落在了點B′位置,連結CB′.已知AB=3,BC=6,則當線段CB′最小時BE的長為______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com