【題目】已知一次函數(shù),增大而增大,它的圖象經(jīng)過點(diǎn)且與軸的夾角為

確定這個一次函數(shù)的解析式;

假設(shè)已知中的一次函數(shù)的圖象沿軸平移兩個單位,求平移以后的直線及直線與軸的交點(diǎn)坐標(biāo).

【答案】一次函數(shù)的解析式為交點(diǎn)坐標(biāo)分別為,

【解析】

(1)由一次函數(shù)y=kx+b,y隨x增大而增大,可得k>0,又由它的圖象與x軸的夾角為45°,可求得k=1,然后由它的圖象經(jīng)過點(diǎn)(1,0),利用待定系數(shù)法即可求得這個一次函數(shù)的解析式.(2)注意平移的方向有兩種可能.

解:由一次函數(shù)的圖象經(jīng)過且它與軸的夾角為可知,它與軸的交點(diǎn)為,因?yàn)?/span>增大而增大,所以只取

圖象經(jīng)過

解得,

∴一次函數(shù)的解析式為

因?yàn)閳D象沿軸平移兩個單位,但是沒有說明方向,故情況有兩類:

①向正方向:,即

②向負(fù)方向:,即,

∴平移后的函數(shù)解析式為:

軸交點(diǎn)

時,,

∴交點(diǎn)坐標(biāo)分別為,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列說法錯誤的是(

A.圖象關(guān)于直線x=1對稱
B.函數(shù)y=ax2+bx+c(a≠0)的最小值是﹣4
C.﹣1和3是方程ax2+bx+c=0(a≠0)的兩個根
D.當(dāng)x<1時,y隨x的增大而增大

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,△ABC是直角三角形,∠A=90°,D是斜邊BC的中點(diǎn),E、F分別是AB、AC邊上的動點(diǎn),且DEDF.

(1)如圖1,AB=AC,BE=12,CF=5,求線段EF的長.

(2)如圖2,若ABAC,寫出線段EF與線段BE、CF之間的等量關(guān)系,并寫出證明過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=ax2+bx+c(a≠0)在平面直角坐標(biāo)系中的位置如圖所示,對稱軸是直線 .則下列結(jié)論中,正確的是(

A.a<0
B.c<﹣1
C.a﹣b+c<0
D.2a+3b=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將拋物線y=﹣2x2﹣1向上平移若干個單位,使拋物線與坐標(biāo)軸有三個交點(diǎn),如果這些交點(diǎn)能構(gòu)成直角三角形,那么平移的距離為(
A. 個單位
B.1個單位
C. 個單位
D. 個單位

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,點(diǎn)DBC的中點(diǎn),點(diǎn)E△ABC內(nèi)一點(diǎn),若∠AEB=∠CED=90°,AE=BE,CE=DE=2,則圖中陰影部分的面積等于__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在同一平面直角坐標(biāo)系中,一次函數(shù)y=ax+b和二次函數(shù)y=ax2+bx的圖象可能為(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,∠ABD、CDB的平分線BE、DF分別交邊AD、BC于點(diǎn)E、F.

(1)求證:四邊形BEDF為平行四邊形;

(2)當(dāng)∠ABE為多少度時,四邊形BEDF是菱形?請說明理由.

(3)在(2)的條件下,當(dāng)AE=3時,求四邊形BEDF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在Rt△ABC中,∠ABC=90°,以AB為直徑的⊙O交AC于E點(diǎn),D為BC的中點(diǎn).求證:DE與⊙O相切.

查看答案和解析>>

同步練習(xí)冊答案