【題目】如圖,矩形ABCD中,∠ABD、∠CDB的平分線BE、DF分別交邊AD、BC于點E、F.
(1)求證:四邊形BEDF為平行四邊形;
(2)當(dāng)∠ABE為多少度時,四邊形BEDF是菱形?請說明理由.
(3)在(2)的條件下,當(dāng)AE=3時,求四邊形BEDF的面積.
【答案】(1)見解析;(2)見解析;(3)18.
【解析】
(1)由BE、DF均為角平分線可得∠EBD=∠FDB,則BE∥DF,再由題意可知BF∥DE,故利用兩組對邊分別平行可證明;
(2)菱形的四邊相等,則∠ABE=∠EBD=∠EDB,又由∠ABD+∠EDB=90可求解出∠ABE的度數(shù);
(3)分別求解出AB和ED的長度,利用菱形面積公式計算即可.
證明:(1)∵四邊形ABCD是矩形
∴AB∥CD,BC∥AD,∠A=90°=∠ABC
∵AB∥CD
∴∠ABD=∠BDC
∵BE,DF分別平分∠ABD,∠BDC
∴∠ABE=∠DBE=∠ABD,∠CDF=∠BDF=∠BDC
∴∠EBD=∠FDB
∴BE∥DF且AD∥BC
∴四邊形BEDF為平行四邊形
(2)若四邊形BEDF是菱形
∴∠CBD=∠DBE,且∠DBE=∠ABE
∴∠CBD=∠DBE=∠ABE
∵∠CBD+∠DBE+∠ABE=90°
∴∠ABE=30°
∴當(dāng)∠ABE=30°時,四邊形BEDF是菱形
(3)∵∠A=90°,∠ABE=30°,AE=3
∴BE=6,AB=AE=3
∵四邊形BEDF是菱形
∴BE=DE=6
∴四邊形BEDF的面積=DE×AB=18
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù),隨增大而增大,它的圖象經(jīng)過點且與軸的夾角為,
確定這個一次函數(shù)的解析式;
假設(shè)已知中的一次函數(shù)的圖象沿軸平移兩個單位,求平移以后的直線及直線與軸的交點坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于x的一元二次方程(k﹣1)x2+2x﹣2=0有不相等實數(shù)根,則k的取值范圍是( )
A.k>
B.k≥
C.k> 且k≠1
D.k≥ 且k≠1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把拋物線y= x2平移得到拋物線m,拋物線m經(jīng)過點A(﹣6,0)和原點O(0,0),它的頂點為P,它的對稱軸與拋物線y= x2交于點Q,則圖中陰影部分的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,點C,D,E三點在同一條直線上,連接BD,BE.以下四個結(jié)論:
①BD=CE;②∠ACE+∠DBC=45°;③BD⊥CE;④∠BAE+∠DAC=180°.其中結(jié)論正確的個數(shù)是( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰△ABC中,AB=AC,BC∥x軸,點A,C在反比例函數(shù)y= (x>0)的圖象上,點B在反比例函數(shù)y= (x>0)的圖象上,則△ABC的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=x2﹣(m﹣2)x+m的圖象過點(﹣1,15),設(shè)其圖象與x軸交于點A,B(A在B的左側(cè)),點C在圖象上,且S△ABC=1,求:
(1)求m;
(2)求點A,點B的坐標(biāo);
(3)求點C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知y=y1﹣y2 , y1與x2成正比例,y2與x﹣1成反比例,當(dāng)x=﹣1時,y=3;當(dāng)x=2時,y=﹣3.
(1)求y與x之間的函數(shù)關(guān)系;
(2)當(dāng)x= 時,求y的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com