【題目】如圖,已知銳角∠AOB,射線OC不與OA,OB重合,OM,ON分別平分∠AOC,∠BOC.
(1)當(dāng)OC在∠AOB的內(nèi)部
①若∠BOC=50°,∠AOC=20°,求∠MON的大。
②若∠MON=30°,求∠AOB的大。
(2)當(dāng)射線OC在∠AOB外部,且∠AOB=80°,請直接寫出∠MON的大小.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△BCF中,點D是邊CF上的一點,過點D作AD∥BC,過點B作BA∥CD交AD于點A,點G是BC的中點,點E是線段AD上一點,且∠CDG=∠ABE=∠EBF.
(1)若∠F=60°,∠C=45°,BC=2,請求出AB的長;
(2)求證:CD=BF+DF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC和△ADE都是等腰直角三角形,AB=AC,AD=AE,∠BAC=∠DAE=90°.
(1)求證:△ACE≌△ABD;
(2)若AC=2,EC=4,DC=2,求∠ACD的度數(shù);
(3)在(2)的條件下,直接寫出DE的長為 .(只填結(jié)果,不用寫計算過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A(0,2),在x軸上取一點B,連接AB,以A為圓心,任意長為半徑畫弧,分別交OA、AB于點M、N,再以M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點D,連接AD并延長交x軸于點P.若△OPA與△OAB相似,則點P的坐標(biāo)為( 。
A. (1,0)B. (,0)C. (,0)D. (2,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊△ABC中,BC=6,D、E分別在BC、AC上,且DE∥AC,MN是△BDE的中位線.將線段DE從BD=2處開始向AC平移,當(dāng)點D與點C重合時停止運動,則在運動過程中線段MN所掃過的區(qū)域面積為_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有正方形ABCD和一個以O(shè)為直角頂點的三角板,移動三角板,使三角板的兩直角邊所在直線分別與直線BC,CD交于點M,N.
(1)如圖1,若點O與點A重合,則OM與ON的數(shù)量關(guān)系是__________________;
(2)如圖2,若點O在正方形的中心(即兩對角線的交點),則(1)中的結(jié)論是否仍然成立?請說明理由;
(3)如圖3,若點O在正方形的內(nèi)部(含邊界),當(dāng)OM=ON時,請?zhí)骄奎cO在移動過程中可形成什么圖形?
(4)如圖4是點O在正方形外部的一種情況.當(dāng)OM=ON時,請你就“點O的位置在各種情況下(含外部)移動所形成的圖形”提出一個正確的結(jié)論.(不必說理)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某自行車廠一周計劃生產(chǎn)150輛自行車,平均每天生產(chǎn)輛,由于各種原因?qū)嶋H每天生產(chǎn)量與計劃量相比有出入,下表是某周的生產(chǎn)情況(超產(chǎn)為正、減產(chǎn)為負(fù)):
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
增減 |
(1)根據(jù)記錄可知前三天共生產(chǎn) 輛;
(2)產(chǎn)量最多的一天比生產(chǎn)量最少的一天多生產(chǎn) 輛;
(3)該廠實行計劃工資制,每輛車元,超額完成任務(wù)每輛獎元,少生產(chǎn)一輛扣元,那么該廠工人這一周的工資總額是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,AB=AC=10,BC=12,矩形DEFG中,EF=4,FG>12.
(1)如圖①,點A是FG的中點,FG∥BC,將矩形DEFG向下平移,直到DE與BC重合為止.要研究矩形DEFG與△ABC重疊部分的面積,就要進行分類討論,你認(rèn)為如何進行分類,寫出你的分類方法(無需求重疊部分的面積).
(2)如圖②,點B與F重合,E、B、C在同一直線上,將矩形DEFG向右平移,直到點E與C重合為止.設(shè)矩形DEFG與△ABC重疊部分的面積為y,平移的距離為x.
① 求y與x的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
② 在給定的平面直角坐標(biāo)系中畫出y與x的大致圖象,并在圖象上標(biāo)注出關(guān)鍵點坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,矩形 OABC 的 頂 點 A(0,3),C(- 1,0). 將 矩 形 OABC 繞原點順時針旋轉(zhuǎn) 900,得到矩形 OA’B’C’.解答下列問題:
(1)求出直線 BB’的函數(shù)解析式;
(2)直線 BB’與 x 軸交于點 M、與 y 軸交于點N,拋物線 y = ax2+ bx + c 的圖象經(jīng)過點C、M、N,求拋物線的函數(shù)解析式.
(3)將△MON 沿直線 MN 翻折,點 O 落在點P 處,請你判斷點 P 是否在拋物線上,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com