【題目】已知點(diǎn)A、O、B在一條直線上,將射線OC繞O點(diǎn)順時針方向旋轉(zhuǎn)90°后,得到射線OD,在旋轉(zhuǎn)過程中,射線OC始終在直線AB上方,且OE平分∠AOD.約定,無論∠AOD大小如何,OE都看作是由OA、OD兩邊形成的最小角的平分線.
(1)如圖,當(dāng)∠AOC=30°時,∠BOD=_________°;
(2)若射線OF平分∠BOC,求∠EOF的度數(shù).
【答案】(1)60;(2)45°或135°
【解析】
(1)根據(jù)平角定義即可得出結(jié)論;
(2)分兩種情況討論:①當(dāng)OC、OD都在直線AB上方時;當(dāng)OC在直線AB上方,OD在直線AB下方時.
(1)∵∠AOC=30°,∠COD=90°,∴∠BOD=180°-∠AOC-∠COD=180°-30°-90°=60°.
(2)分兩種情況討論:
①當(dāng)OC、OD都在直線AB上方時,如圖1.設(shè)∠AOC=x,則∠BOC=180°-x.
∵∠COD=90°,∴∠AOD=90°+x,∠BOD=90°-x.
∵OE平分∠AOD,∴∠EOD=∠AOD=(90°+x)=45°+0.5x.
∵OF平分∠BOC,∴∠BOF=∠BOC=(180°-x)=90°-0.5x,∴∠FOD=∠BOF-∠BOD=(90°-0.5x)-(90°-x)=0.5x,∴∠EOF=∠EOD-∠DOF=(45°+0.5x)-0.5x=45°.
②當(dāng)OC在直線AB上方,OD在直線AB下方時,如圖2.
設(shè)∠AOC=x,則∠BOC=180°-x.
∵∠COD=90°,∴∠AOD=360°-90°-x=270°-x,∠BOD=180°-∠AOD=180°-(270°-x)=x-90°.
∵OE平分∠AOD,∴∠EOD=∠AOD=(270°-x)=135°-0.5x.
∵OF平分∠BOC,∴∠BOF=∠BOC=(180°-x)=90°-0.5x,∴∠FOD=∠BOF+∠BOD=(90°-0.5x)+(x-90°)=0.5x,∴∠EOF=∠EOD+∠DOF=(135°-0.5x)+0.5x=135°.
綜上所述:∠EOF的度數(shù)為45°或135°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,甲、乙、丙三艘輪船從港口O出發(fā),當(dāng)分別行駛到A,B,C處時,經(jīng)測量得,甲船位于港口的北偏東43°45′方向,乙船位于港口的北偏東76°35′方向,丙船位于港口的北偏西43°45′方向.
(1)求∠BOC的度數(shù);
(2)求∠AOB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為籌備校慶活動,準(zhǔn)備印制一批校慶紀(jì)念冊,該紀(jì)念冊每冊需要10張8K大小的紙,其中4張為彩色頁,6張為黑白頁.印制該紀(jì)念冊的總費(fèi)用由制版費(fèi)和印刷費(fèi)兩部分組成,制版費(fèi)與印數(shù)無關(guān),價格為:彩色頁300元/張,黑白頁50元/張;印刷費(fèi)與印數(shù)的關(guān)系見表.
印數(shù)a。▎挝唬呵裕 | 1≤a<5 | 5≤a<10 |
彩色 (單位:元/張) | 2.2 | 2.0 |
黑白(單位:元/張) | 0.7 | 0.6 |
(1)直接寫出印制這批紀(jì)念冊的制版費(fèi)為多少元;
(2)若印制6千冊,那么共需多少費(fèi)用?
(3)如印制x(1≤x<10)千冊,所需費(fèi)用為y元,請寫出y與x之間的關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】給下面命題的說理過程填寫依據(jù).
已知:如圖,直線AB,CD相交于點(diǎn)O,EO⊥CD,垂足為O,OF平分∠BOD,對∠EOF=∠BOC說明理由.
理由:因?yàn)?/span>∠AOC=∠BOD( ),
∠BOF=∠BOD( ),
所以∠BOF=∠AOC( ).
因?yàn)?/span>∠AOC=180°-∠BOC( ),
所以∠BOF=90°-∠BOC.
因?yàn)?/span>EO⊥CD( ),
所以∠COE=90°( )
因?yàn)?/span>∠BOE+∠COE=∠BOC( ),
所以∠BOE=∠BOC-∠COE.
所以∠BOE=∠BOC-90°( )
因?yàn)?/span>∠EOF=∠BOE+∠BOF( )
所以∠EOF=(∠BOC-90°)+(90°∠BOC)( )
所以∠EOF=∠BOC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一個用硬紙板制作的長方體包裝盒展開圖,已知它的底面形狀是正方形,高為12cm.
(1)制作這樣的包裝盒需要多少平方厘米的硬紙板?
(2)若1平方米硬紙板價格為5元,則制作10個這的包裝盒需花費(fèi)多少錢?(不考慮邊角損耗)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:四邊形ABCD中,AD∥BC,AD=AB=CD,∠BAD=120°,點(diǎn)E是射線CD上的一個動點(diǎn)(與C、D不重合),將△ADE繞點(diǎn)A順時針旋轉(zhuǎn)120°后,得到△ABE',連接EE'.
(1)如圖1,∠AEE'= °;
(2)如圖2,如果將直線AE繞點(diǎn)A順時針旋轉(zhuǎn)30°后交直線BC于點(diǎn)F,過點(diǎn)E作EM∥AD交直線AF于點(diǎn)M,寫出線段DE、BF、ME之間的數(shù)量關(guān)系;
(3)如圖3,在(2)的條件下,如果CE=2,AE=,求ME的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=2x-4
(1)畫出函數(shù)的圖象;
(2)判斷點(diǎn)A(1,-2),B(2,1)是否在該函數(shù)的圖象上.
(3)已知點(diǎn)A(-2,b)在該函數(shù)圖像上,求b值;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知長方形ABCD在平面直角坐標(biāo)系中的位置如圖所示,將長方形ABCD沿x軸向左平移到使點(diǎn)C與坐標(biāo)原點(diǎn)重合后,再沿y軸向下平移到使點(diǎn)D與坐標(biāo)原點(diǎn)重合,此時點(diǎn)A的坐標(biāo)是______,點(diǎn)B的坐標(biāo)是______,點(diǎn)C的坐標(biāo)是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖a是一個長為2m,寬為2n的長方形,沿圖a中虛線用剪刀把它均分成四塊小長方形,然后按圖b的形狀拼成一個正方形.
(1)請用兩種不同的方法求圖b中陰影部分的面積:
方法1: ____ (只列式,不化簡)
方法2: ______ (只列式,不化簡)
(2)觀察圖b,寫出代數(shù)式(m+n)2,(m-n)2,mn之間的等量關(guān)系: ______ ;
(3)根據(jù)(2)題中的等量關(guān)系,解決如下問題:若a+b=7,ab=5,
則(a-b)2= ______ .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com