【題目】如圖,等邊的邊長為,是邊上的動點,交邊于點,在邊上取一點,使,連接.
(1)請直接寫出圖中與線段相等的兩條線段;(不再另外添加輔助線)
(2)探究:當點在什么位置時,四邊形是平行四邊形?并判斷四邊形是什么特殊的平行四邊形,請說明理由;
(3)在(2)的條件下,以點為圓心,為半徑作圓,根據(jù)與平行四邊形四條邊交點的總個數(shù),求相應(yīng)的的取值范圍.
【答案】(1);(2);(3)見解析
【解析】
(1)由平行易得△BFE是等邊三角形,那么各邊是相等的;
(2)當點E是BC的中點時,△PEC為等邊三角形,可得到PC=EC=BE=EF,也就得到了四邊形EFPC是平行四邊形,再有EF=EC可證為菱形;
(3)根據(jù)各點到圓心的距離作答即可.
解:(1)如圖,∵△ABC是等邊三角形,
∴∠B=∠A=∠C=60°.
又∵EF∥AC,
∴∠BFE=∠A=60°,∠BEF=∠C=60°,
∴△BFE是等邊三角形,PE=EB,
∴EF=BE=PE=BF;
(2)當點E是BC的中點時,四邊形是菱形;
∵E是BC的中點,
∴EC=BE,
∵PE=BE,
∴PE=EC,
∵∠C=60°,
∴△PEC是等邊三角形,
∴PC=EC=PE,
∵EF=BE,
∴EF=PC,
又∵EF∥CP,
∴四邊形EFPC是平行四邊形,
∵EC=PC=EF,
∴平行四邊形EFPC是菱形;
(3)如圖所示:
當點E是BC的中點時,EC=1,則NE=ECcos30°=,
當0<r<時,有兩個交點;
當r=時,有四個交點;
當<r<1時,有六個交點;
當r=1時,有三個交點;
當r>1時,有0個交點.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列各式,........請按照上述三個等式及其變化過程,回答下列問題。
(1)猜想________________.
(2)猜想_____________________=.
(3)試猜想第N個等式為_____________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD紙片中,已知∠A=160°,∠B=30°,∠C=60°,四邊形ABCD紙片分別沿EF,GH,OP,MN折疊,使A與A′、B與B′、C與C′、D與D′重合,則∠1+∠2+∠3+∠4+∠5+∠6+∠7﹣∠8的值是( 。
A. 600° B. 700° C. 720° D. 800°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算
(1).
(2)(﹣2a)3﹣(﹣a)(3a)2.
(3)(x+2)2﹣(x﹣1)(x﹣2).
(4)(a+b)2(a﹣b)2.
(5)(a﹣3)(a+3)(a2+9).
(6)(m﹣2n+3)(m+2n﹣3).
(7).
(8).
(9).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,∠ABG為銳角,AH∥BG,點C從點B(C不與B重合)出發(fā),沿射線BG的方向移動,CD∥AB交直線AH于點D,CE⊥CD交AB于點E,CF⊥AD,垂足為F(F不與A重合),若∠ECF=n°,則∠BAF的度數(shù)為_____度.(用n來表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC,A(﹣2,3),B(﹣4,﹣1),C(1,0).
(1)P(x0,y0)是△ABC內(nèi)任一點,經(jīng)平移后對應(yīng)點為P1(x0+2,y0+1),將△ABC作同樣的平移,得到△A1B1C1,
①直接寫出A1、B1、C1的坐標.
②若點E(a﹣2,5﹣b)是點F(2a﹣3,2b﹣5)通過平移變換得到的,求b﹣a的平方根.
(2)若Q為x軸上一點,S△BCQ=S△ABC,直接寫出點Q的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】早上,小明從家里步行去學(xué)校,出發(fā)一段時間后,小明媽媽發(fā)現(xiàn)小明的作業(yè)本落在家里,便帶上作業(yè)本騎車追趕,途中追上小明兩人稍作停留,媽媽騎車返回,小明繼續(xù)步行前往學(xué)校,兩人同時到達.設(shè)小明在途的時間為x,兩人之間的距離為y,則下列選項中的圖象能大致反映y與x之間關(guān)系的是( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】以銳角△ABC的邊AC、AB為邊向外作正方形ACDE和正方形ABGF,連結(jié)BE、CF.
(1)你能找到哪兩個圖形可以通過旋轉(zhuǎn)而相互得到,并指出旋轉(zhuǎn)中心和旋轉(zhuǎn)角.
(2)試探索BE和CF有什么數(shù)量關(guān)系和位置關(guān)系?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知 A(-2,0),B(0,m)兩點,且線段AB= 2 ,以 AB 為邊在第二象限內(nèi)作正方形 ABCD。
(1)求點 B 的坐標
(2)在 x 軸上是否存在點 Q,使△QAB 是以 AB 為腰的等腰三角形?若存在,請直接寫出點 Q 的坐標,若不存在,請說明理由;
(3)如果在坐標平面內(nèi)有一點 P(a,3),使得△ABP 的面積與正方形 ABCD 的面 積相等,求 a 的值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com