【題目】觀察一組等式的規(guī)律:1×3+1=22,2×4+1=32,3×5+1=42,4×6+1=52,則第n個等式為:________..

【答案】nn+2+1=n+12

【解析】

試題 根據(jù)1×3+1=22,2×4+1=323×5+1=42,4×6+1=52,判斷出每個加數(shù)、和的特征,求出第n個等式為:nn+2+1=n+12

故答案為:nn+2+1=n+12

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,有一個面積為1的正方形,經(jīng)過一次生長后,在它的左右肩上生出兩個小正方形,如圖2,其中,三個正方形圍成的三角形是直角三角形.再經(jīng)過一次生長后,變成圖3;生長”10次后,如果繼續(xù)生長下去,它將變得更加枝繁葉茂

隨著不斷地生長,形成的圖形中所有正方形的面積和也隨之變化.若生長n次后,變成的圖中所有正方形的面積用Sn表示,求回答:

1S0 ,S1 S2 ,S3 ;

2S0S1S2S10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某種品牌的手機經(jīng)過四、五月份連續(xù)兩次降價,每部售價由1000元降到了810元.則平均每月降價的百分率為( 。
A.9.5%
B.20%
C.10%
D.11%

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:多項式A=2x2﹣xy,B=x2+xy﹣6,求:
(1)4A﹣B;
(2)當(dāng)x=1,y=﹣2時,4A﹣B的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將拋物線y=﹣2x2先向右平移1個單位,再向上平移3個單位后,所得的拋物線的函數(shù)表達式為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了更好的保護美麗圖畫的邛海濕地,西昌市污水處理廠決定先購買A、B兩型污水處理設(shè)備共20臺,對邛海濕地周邊污水進行處理,每臺A型污水處理設(shè)備12萬元,每臺B型污水處理設(shè)備10萬元.已知1臺A型污水處理設(shè)備和2臺B型污水處理設(shè)備每周可以處理污水640噸,2臺A型污水處理設(shè)備和3臺B型污水處理設(shè)備每周可以處理污水1080噸

(1)求A、B兩型污水處理設(shè)備每周分別可以處理污水多少噸?

(2)經(jīng)預(yù)算,市污水處理廠購買設(shè)備的資金不超過230萬元,每周處理污水的量不低于4500噸,請你列舉出所有購買方案,并指出哪種方案所需資金最少?最少是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】0.0813寫成a×10n1a10,n為整數(shù))的形式,則a為( 。

A.1B.2C.0.813D.8.13

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖1,已知:在ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點A,BD⊥直線m,CE⊥直線m,垂足分別為點D、E.證明:DE=BD+CE.

(2)如圖2,將(1)中的條件改為:在ABC中,AB=AC,D、A、E三點都在直線m上,并且∠BDA=AEC=BAC=α,其中α為任意銳角或鈍角.請問結(jié)論DE=BD+CE是否成立?若成立,請給出證明;若不成立,請說明理由.

(3)拓展與應(yīng)用:如圖3,D、ED、A、E三點所在直線m上的兩動點(D、A、E三點

互不重合),點F為∠BAC平分線上的一點,且ABFACF均為等邊三角形,連接BD、CE,若∠BDA=AEC=BAC,試判斷DEF的形狀.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知A=3b2﹣2a2+5ab,B=4ab﹣2b2﹣a2

(1)化簡:3A﹣4B;

(2)當(dāng)a=1,b=﹣1時,求3A﹣4B的值.

查看答案和解析>>

同步練習(xí)冊答案