【題目】如圖1,點O為直線AB上一點,過點O作射線OC,使∠AOC=60°.將一把直角三角尺的直角頂點放在點O處,一邊OM在射線OB上,另一邊ON在直線AB的下方,其中∠OMN=30°.
(1)將圖1中的三角尺繞點O順時針旋轉至圖2,使一邊OM在∠BOC的內(nèi)部,且恰好平分∠BOC,求∠CON的度數(shù);
(2)將圖1中的三角尺繞點O按每秒10°的速度沿順時針方向旋轉一周,在旋轉的過程中,在第______秒時,邊MN恰好與射線OC平行;在第______秒時,直線ON恰好平分銳角∠AOC.(直接寫出結果);
(3)將圖1中的三角尺繞點O順時針旋轉至圖3,使ON在∠AOC的內(nèi)部,請?zhí)骄俊?/span>AOM與∠NOC之間的數(shù)量關系,并說明理由.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx過A(4,0),B(1,3)兩點,點C、B關于拋物線的對稱軸對稱,過點B作直線BH⊥x軸,交x軸于點H.
(1)求拋物線的表達式,并求出△ABC的面積;
(2)點P是拋物線上一動點,且位于第四象限,當△ABP的面積為6時,求出點P的坐標;
(3)若點M在直線BH上運動,點N在x軸上運動,當以點C、M、N為頂點的三角形為等腰直角三角形時,請直接寫出此時△CMN的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC 在平面直角坐標系中,將△ABC 的三個頂點的縱坐標保持不變,橫坐標都乘以-1,得到△A1B1C1,則下列說法正確的是( )
A. △ABC 與△A1B1C1 關于 x 軸對稱
B. △ABC 與△A1B1C1 關于 y 軸對稱
C. △A1B1C1是由△ABC 沿 x 軸向左平移一個單位長度得到的
D. △A1B1C1是由△ABC 沿 y 軸向下平移一個單位長度得到的
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:關于的方程2x2+kx-1=0 .
(1)求證:方程有兩個不相等的實數(shù)根;
(2)若方程的一個根是-1,求另一個根及k值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=﹣x2+4x+n經(jīng)過點A(1,0),與y軸交于點B.
(1)求拋物線的解析式和頂點坐標;
(2)若P是x軸上一點,且△PAB是以AB為腰的等腰三角形,試求P點坐標.(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一組數(shù)據(jù)含有三個不同的數(shù):3,8,7,它們的頻數(shù)分別是3,5,2,則這組數(shù)據(jù)的平均數(shù)是______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com