【題目】如圖,在⊙O中,AB為直徑,C為⊙O上一點(diǎn),過(guò)點(diǎn)C作⊙O的切線,與AB的延長(zhǎng)線相交于點(diǎn)P,若∠CAB=27°,求∠P的大。

【答案】解:連接OC,如圖, ∵OA=OC,
∴∠OCA=∠A=27°,
∴∠POC=∠A+∠OCA=54°,
∵PC為切線,
∴OC⊥PC,
∴∠PCO=90°,
∴∠P=90°﹣∠POC=90°﹣54°=36°.

【解析】連接OC,如圖,先利用等腰三角形的性質(zhì)得到∠OCA=∠A=27°,再根據(jù)三角形外角性質(zhì)得到∠POC=54°,接著根據(jù)切線的性質(zhì)得到∠PCO=90°,然后利用互余計(jì)算∠P的度數(shù).
【考點(diǎn)精析】通過(guò)靈活運(yùn)用切線的性質(zhì)定理,掌握切線的性質(zhì):1、經(jīng)過(guò)切點(diǎn)垂直于這條半徑的直線是圓的切線2、經(jīng)過(guò)切點(diǎn)垂直于切線的直線必經(jīng)過(guò)圓心3、圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)內(nèi)一點(diǎn),且點(diǎn)到三邊的距離相等,,則________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】探究與發(fā)現(xiàn):

如圖1所示的圖形,像我們常見(jiàn)的學(xué)習(xí)用品﹣﹣圓規(guī).我們不妨把這樣圖形叫做規(guī)形圖,那么在這一個(gè)簡(jiǎn)單的圖形中,到底隱藏了哪些數(shù)學(xué)知識(shí)呢?下面就請(qǐng)你發(fā)揮你的聰明才智,解決以下問(wèn)題:

(1)觀察規(guī)形圖,試探究∠BDC與∠A、B、C之間的關(guān)系,并說(shuō)明理由;

(2)請(qǐng)你直接利用以上結(jié)論,解決以下三個(gè)問(wèn)題:

①如圖2,把一塊三角尺XYZ放置在ABC上,使三角尺的兩條直角邊XY、XZ恰好經(jīng)過(guò)點(diǎn)B、C,若∠A=50°,則∠ABX+ACX=__________°;

②如圖3,DC平分∠ADB,EC平分∠AEB,若∠DAE=50°,DBE=130°,求∠DCE的度數(shù);

③如圖4,ABD,ACD10等分線相交于點(diǎn)G1、G2…、G9,若∠BDC=140°,BG1C=77°,求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】菱形ABCD中,∠B=60°,∠MAN=60°,射線AM交直線BC于點(diǎn)E,射線AN交直線CD于點(diǎn)F,連結(jié)EF,請(qǐng)解答下列問(wèn)題:
(1)如圖1,求證:EC+FC=AC;

(2)將∠MAN繞點(diǎn)A旋轉(zhuǎn),如圖2,如圖3,請(qǐng)直接寫出線段EC,F(xiàn)C,AC之間的數(shù)量關(guān)系,不需要證明;

(3)若S菱形ABCD=18 ,∠CAE=30°,則CF=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,以長(zhǎng)為一邊作,,取中點(diǎn),連、

求證:

當(dāng)________時(shí),是等邊三角形,并說(shuō)明理由.

當(dāng)時(shí),若,取中點(diǎn),求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,A,B為x軸上兩點(diǎn),C、D為y軸上的兩點(diǎn),經(jīng)過(guò)點(diǎn)A,C,B的拋物線的一部分C2組合成一條封閉曲線,我們把這條封閉曲線成為“蛋線”.已知點(diǎn)C的坐標(biāo)為(0,﹣ ),點(diǎn)M是拋物線C2:y=mx2﹣2mx﹣3m(m<0)的頂點(diǎn).

(1)求A、B兩點(diǎn)的坐標(biāo);
(2)“蛋線”在第四象限上是否存在一點(diǎn)P,使得△PBC的面積最大?若存在,求出△PBC面積的最大值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,是邊的中點(diǎn),以為腰向外作等腰直角三角形,連接,交于點(diǎn),交于點(diǎn),連接.

(1),則 ;

(2)求證: ;

(3),則 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,方格紙中的每個(gè)小格都是邊長(zhǎng)為1個(gè)單位長(zhǎng)度的正方形,每個(gè)小正方形的頂點(diǎn)叫格點(diǎn),△ABC和△DEF的頂點(diǎn)都在格點(diǎn)上,結(jié)合所給的平面直角坐標(biāo)系解答下列問(wèn)題:
(1)畫出△ABC向上平移4個(gè)單位長(zhǎng)度后所得到的△A1B1C1
(2)畫出△DEF繞點(diǎn)F按順時(shí)針?lè)较蛐D(zhuǎn)90°后所得到的△D1E1F1
(3)求點(diǎn)D在旋轉(zhuǎn)過(guò)程中劃過(guò)的路徑長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y=﹣ x+1與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,拋物線y=﹣x2+bx+c經(jīng)過(guò)A,B兩點(diǎn).

(1)求拋物線的解析式;
(2)點(diǎn)P是第一象限拋物線上的一點(diǎn),連接PA、PB、PO,若△POA的面積是△POB面積的 倍.
①求點(diǎn)P的坐標(biāo);
②點(diǎn)Q為拋物線對(duì)稱軸上一點(diǎn),請(qǐng)直接寫出QP+QA的最小值;
(3)點(diǎn)M為直線AB上的動(dòng)點(diǎn),點(diǎn)N為拋物線上的動(dòng)點(diǎn),當(dāng)以點(diǎn)O、B、M、N為頂點(diǎn)的四邊形是平行四邊形時(shí),請(qǐng)直接寫出點(diǎn)M的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案