【題目】如圖,在平面直角坐標(biāo)系xOy中,A,B為x軸上兩點(diǎn),C、D為y軸上的兩點(diǎn),經(jīng)過點(diǎn)A,C,B的拋物線的一部分C2組合成一條封閉曲線,我們把這條封閉曲線成為“蛋線”.已知點(diǎn)C的坐標(biāo)為(0,﹣ ),點(diǎn)M是拋物線C2:y=mx2﹣2mx﹣3m(m<0)的頂點(diǎn).
(1)求A、B兩點(diǎn)的坐標(biāo);
(2)“蛋線”在第四象限上是否存在一點(diǎn)P,使得△PBC的面積最大?若存在,求出△PBC面積的最大值;若不存在,請(qǐng)說明理由.
【答案】
(1)
解:∵y=mx2﹣2mx﹣3m=m(x﹣3)(x+1),且m≠0,
∴當(dāng)y=0時(shí),可得m(x﹣3)(x+1)=0,解得x1=﹣1,x2=3,
∴A(﹣1,0),B(3,0);
(2)
解:設(shè)過A、B、C三點(diǎn)的拋物線解析式為y=ax2+bx+c,
則有 ,解得 ,
∴拋物線C1解析式為y= x2﹣x﹣ ,
如圖,過點(diǎn)P作PQ∥y軸,交BC于Q,
設(shè)直線BC解析式為y=kx+s,則有 ,解得 ,
∴直線BC的解析式為y= x﹣ ,
設(shè)P(x, x2﹣x﹣ ),則Q(x, x﹣ ),
∴PQ= x﹣ ﹣( x2﹣x﹣ )=﹣ x2+ x,
∴S△PBC= PQOB= ×(﹣ x2+ x)×3=﹣ (x﹣ )2+ ,
∵﹣ <0,
∴當(dāng)x= 時(shí),S△PBC有最大值,S最大= ,
×( )2﹣ ﹣ =﹣ ,此時(shí)P點(diǎn)坐標(biāo)為( ,﹣ ).
【解析】(1)把拋物線解析整理,令y=0可求得x的值,則可求得A、B的坐標(biāo);(2)由A、B、C的坐標(biāo),可求得經(jīng)過點(diǎn)A、B、C的拋物線解析式,連接BC、過點(diǎn)P作PQ∥y軸,交BC于點(diǎn)Q,由B、C的坐標(biāo)可求得直線BC的解析式,則可設(shè)出P點(diǎn)坐標(biāo),從而表示出Q點(diǎn)坐標(biāo),則可求得PQ的長(zhǎng),從而用P點(diǎn)坐標(biāo)表示出△PBC的面積,利用二次函數(shù)的性質(zhì)可求得P點(diǎn)坐標(biāo)和△PBC面積的最大值.
【考點(diǎn)精析】掌握二次函數(shù)的圖象和二次函數(shù)的性質(zhì)是解答本題的根本,需要知道二次函數(shù)圖像關(guān)鍵點(diǎn):1、開口方向2、對(duì)稱軸 3、頂點(diǎn) 4、與x軸交點(diǎn) 5、與y軸交點(diǎn);增減性:當(dāng)a>0時(shí),對(duì)稱軸左邊,y隨x增大而減。粚(duì)稱軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱軸左邊,y隨x增大而增大;對(duì)稱軸右邊,y隨x增大而減小.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知矩形ABCD,點(diǎn)P為BC邊上一動(dòng)點(diǎn),連接AP,將線段AP繞P點(diǎn)順時(shí)針旋轉(zhuǎn)90°,點(diǎn)A恰好落在直線CD上點(diǎn)E處.
(1)如圖1,點(diǎn)E在線段CD上,求證:AD+DE=2AB;
(2)如圖2,點(diǎn)E在線段CD的延長(zhǎng)線上,且點(diǎn)D為線段CE的中點(diǎn),在線段BD上取點(diǎn)F,連接AF、PF,若AF=AB.求證:∠APF=∠ADB.
(3)如圖3,點(diǎn)E在線段CD上,連接BD,若AB=2,BD∥PE,則DE= . (直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把球放在長(zhǎng)方體紙盒內(nèi),球的一部分露出盒外,其截面如圖所示,已知EF=CD=16厘米,則球的半徑為厘米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖表示一圓柱形輸水管的橫截面,陰影部分為有水部分,如果輸水管的半徑為5cm,水面寬AB為8cm,則水的最大深度CD為( )
A.4cm
B.3cm
C.2cm
D.1cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,AB為直徑,C為⊙O上一點(diǎn),過點(diǎn)C作⊙O的切線,與AB的延長(zhǎng)線相交于點(diǎn)P,若∠CAB=27°,求∠P的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】作圖題.
(1)如圖,在圖①所給的方格紙中,每個(gè)小正方形的邊長(zhǎng)都是1,標(biāo)號(hào)為①②③的三個(gè)三角形均為格點(diǎn)三角形(頂點(diǎn)在方格的頂點(diǎn)處),請(qǐng)按要求將圖②中的指定圖形分割成三個(gè)三角形,使它們與標(biāo)號(hào)為①②③的三個(gè)三角形分別對(duì)應(yīng)全等(分割線畫成實(shí)線);
(2)如圖③,在邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形組成的正方形網(wǎng)格中,點(diǎn)都在小正方形的頂點(diǎn)上.
①在圖中畫出與關(guān)于直線成軸對(duì)稱的;
②請(qǐng)?jiān)谥本上找一點(diǎn),使得的距離之和最小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,AC=BC=1,將Rt△ABC繞A點(diǎn)逆時(shí)針旋轉(zhuǎn)30°后得到Rt△ADE,點(diǎn)B經(jīng)過的路徑為 , 則圖中陰影部分的面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知反比例函數(shù)y= 的圖象與一次函數(shù)y=ax+b的圖象交于兩點(diǎn)M(4,m)和N(﹣2,﹣8),一次函數(shù)y=ax+b與x軸交于點(diǎn)A,與y軸交于點(diǎn)B.
(1)求這兩個(gè)函數(shù)的解析式;
(2)求△MON的面積;
(3)根據(jù)圖象回答:當(dāng)x取何值時(shí),反比例函數(shù)的值大于一次函數(shù)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將半徑為3cm,圓心角為60°的扇形紙片.AOB在直線l上向右作無滑動(dòng)的滾動(dòng)至扇形A′O′B′處,則頂點(diǎn)O經(jīng)過的路線總長(zhǎng) cm(結(jié)果保留π).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com