【題目】如圖1,四邊形是矩形,點的坐標為,點的坐標為.從點出發(fā),沿以每秒1個單位長度的速度向點運動,同時點從點出發(fā),沿以每秒2個單位長度的速度向點運動,當點與點重合時運動停止.設運動時間為.

(1)當時,線段的中點坐標為________;

(2)當相似時,求的值;

(3)當時,拋物線經過兩點,與軸交于點,拋物線的頂點為,如圖2所示.問該拋物線上是否存在點,使,若存在,求出所有滿足條件的點坐標;若不存在,說明理由.

【答案】(1)的中點坐標是;(2);(3).

【解析】(1)先根據時間t=2,和速度可得動點PQ的路程OPAQ的長,再根據中點坐標公式可得結論;

(2)根據矩形的性質得:∠B=∠PAQ=90°,所以當△CBQ與△PAQ相似時,存在兩種情況:

①當△PAQ∽△QBC時,,②當△PAQ∽△CBQ時,,分別列方程可得t的值;

(3)根據t=1求拋物線的解析式,根據Q(3,2),M(0,2),可得MQ∥x軸,∴KM=KQ,KE⊥MQ,畫出符合條件的點D,證明△KEQ∽△QMH,列比例式可得點D的坐標,同理根據對稱可得另一個點D.

1)如圖1,∵點A的坐標為(3,0),

∴OA=3,

t=2時,OP=t=2,AQ=2t=4,

∴P(2,0),Q(3,4),

∴線段PQ的中點坐標為:(),即(,2);

故答案為:,2);

(2)如圖1,∵四邊形OABC是矩形,

∴∠B=∠PAQ=90°

∴當△CBQ與△PAQ相似時,存在兩種情況:

①當△PAQ∽△QBC時,

,

4t2-15t+9=0,

(t-3)(t-)=0,

t1=3(舍),t2=

②當△PAQ∽△CBQ時,

,

t2-9t+9=0,

t=

∵0≤t≤6,>7,

∴x=不符合題意,舍去,

綜上所述,當△CBQ與△PAQ相似時,t的值是;

(3)當t=1時,P(1,0),Q(3,2),

P(1,0),Q(3,2)代入拋物線y=x2+bx+c中得:

,解得:

∴拋物線:y=x2-3x+2=(x-2-,

∴頂點k(,-),

∵Q(3,2),M(0,2),

∴MQ∥x軸,

作拋物線對稱軸,交MQE,

∴KM=KQ,KE⊥MQ,

∴∠MKE=∠QKE=∠MKQ,

如圖2,∠MQD=∠MKQ=∠QKE,設DQy軸于H,

∵∠HMQ=∠QEK=90°,

∴△KEQ∽△QMH,

,

,

∴MH=2,

∴H(0,4),

易得HQ的解析式為:y=-x+4,

,

x2-3x+2=-x+4,

解得:x1=3(舍),x2=-,

∴D(-,);

同理,在M的下方,y軸上存在點H,如圖3,使∠HQM=∠MKQ=∠QKE,

由對稱性得:H(0,0),

易得OQ的解析式:y=x,

,

x2-3x+2=x,

解得:x1=3(舍),x2=

∴D(,);

綜上所述,點D的坐標為:D(-,)或(,).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】.如圖所示,已知△ABC和△BDE都是等邊三角形,下列結論:①AE=CD;②BF=BG;③BH平分∠AHD;④∠AHC=60°;⑤△BFG是等邊三角形;⑥FG∥AD,其中正確的有( )

A. 3個 B. 4個 C. 5個 D. 6個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,直線y=--x+8x軸,y軸分別交于點A,點B,點Dy軸的負半軸上,若將DAB沿直線AD折疊,點B恰好落在x軸正半軸上的點C處.

(1)AB的長和點C的坐標;

(2)求直線CD的表達式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線L1:y=﹣x2+bx+c經過點A(1,0)和點B(5,0)已知直線l的解析式為y=kx﹣5.

(1)求拋物線L1的解析式、對稱軸和頂點坐標.

(2)若直線l將線段AB分成1:3兩部分,求k的值;

(3)當k=2時,直線與拋物線交于M、N兩點,點P是拋物線位于直線上方的一點,當PMN面積最大時,求P點坐標,并求面積的最大值.

(4)將拋物線L1在x軸上方的部分沿x軸折疊到x軸下方,將這部分圖象與原拋物線剩余的部分組成的新圖象記為L2

直接寫出y隨x的增大而增大時x的取值范圍;

直接寫出直線l與圖象L2有四個交點時k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】材料一:我們可以將任意三位數(shù)記為,(其中、、分別表示該數(shù)的百位數(shù)字,十位數(shù)字和個位數(shù)字,且),顯然.

材料二:若一個三位數(shù)的百位數(shù)字,十位數(shù)字和個位數(shù)字均不為0,則稱之為初始數(shù),比如123就是一個初始數(shù),將初始數(shù)的三個數(shù)位上的數(shù)字交換順序,可產生出5個新的初始數(shù),比如由123可以產生出132,213,231,3123215個新初始數(shù),這6個初始數(shù)的和成為終止數(shù).

1)求初始數(shù)125生成的終止數(shù);

2)若一個初始數(shù),滿足,且,記,,,若,求滿足條件的初始數(shù)的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,圖形ABCD是由兩個二次函數(shù)y1=kx2+mk<0)與y2=ax2+ba>0)的部分圖象圍成的封閉圖形.已知A(1,0)、B(0,1)、D(0,﹣3).

(1)直接寫出這兩個二次函數(shù)的表達式;

(2)判斷圖形ABCD是否存在內接正方形(正方形的四個頂點在圖形ABCD上),并說明理由;

(3)如圖2,連接BCCD,AD在坐標平面內,求使得BDCADE相似(其中點C與點E是對應頂點)的點E的坐標

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2020年是全面建成小康社會收官之年,某扶貧幫扶小組積極響應,對農民實施精準扶貧.某農戶老張家種植花椒和黑木耳兩種干貨共800千克,扶貧小組通過市場調研發(fā)現(xiàn),花椒市場價60/千克,黑木耳市場價48/千克,老張全部售完可以收入4.2萬元.已知老張種植花椒成本需25/千克,種植木耳成本需35/千克,根據脫貧目標任務要求,老張種植花椒和黑木耳的兩種干貨的純收入(銷售收入-種植成本)在2萬元以上才可以順利脫貧.請你分析一下扶貧幫扶小組是否能幫助老張順利脫貧.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中,,,則________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點分別在梯形的兩腰、上,且,若,,則的值為( )

A. 15.6 B. 15 C. 19 D. 無法計算

查看答案和解析>>

同步練習冊答案