【題目】如圖,OP平分∠AOB,PAOA,PBOB,垂足分別為A,B.下列結(jié)論中:①PAPB;②△AOP≌△BOP;③OAOB;④PO平分∠APB.其中成立的有________(填寫正確的序號)

【答案】①②③④

【解析】

根據(jù)角平分線上的點到角的兩邊距離相等可得PA=PB,再利用“HL”證明△AOP和△BOP全等,根據(jù)全等三角形對應(yīng)邊相等可得OA=OB,全等三角形對應(yīng)角相等可得∠APO=BPO,即可得到PO平分∠APB

解:∵OP平分∠AOB,PAOA,PBOB

PA=PB,故①正確;

在△AOP和△BOP中,,

∴△AOP≌△BOPHL),故②正確;

∴∠APO=BPOOA=OB,故③正確;

PO平分∠APB,故④正確;

故答案為:①②③④.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的頂點是,拋物線 的頂點是.

(1)判斷點是否在拋物線上,為什么?

(2)如果拋物線經(jīng)過點.

①求的值;

②直線分別交于點(點的左邊),直線分別交于點(點的左邊)是否存在,使得?若存在,求值;若不存在,說明理由.

③在②的條件下,當為何值時, 拋物線都隨的增大而增大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖各圖是棱長為1cm的小正方體擺成的,如圖①中,從正面看有1個正方形,表面積為6cm2;如圖②中,從正面看有3個正方形,表面積為18cm2;如圖③,從正面看有6個正方形,表面積為36cm2;

(1)6個圖中,從正面看有多少個正方形?表面積是多少?

(2)n個圖形中,從正面看有多少個正方形?表面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,AC是⊙O的切線,切點為A,BC交⊙O于點D,點EAC的中點.

(1)試判斷直線DE與⊙O的位置關(guān)系,并說明理由;

(2)若⊙O的半徑為2,B=50°,AC=4.8,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABF≌△CDE.

(1)若∠B=30°,∠DCF=40°,求∠EFC的度數(shù);

(2)若BD=10,EF=2,求BF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)的圖象與y軸正半軸相交,其頂點坐標為(,1),下列結(jié)論:abc0;a=b;a=4c﹣4;方程有兩個相等的實數(shù)根,其中正確的結(jié)論是______.(只填序號即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小王和小李都想去體育館,觀看在我縣舉行的“市長杯”青少年校園 足球聯(lián)賽,但兩人只有一張門票,兩人想通過摸球的方式來決定誰去觀看,規(guī)則如下: 在兩個盒子內(nèi)分別裝入標有數(shù)字 1,2,3,4 的四個和標有數(shù)字 1,2,3 的三個完全相 同的小球,分別從兩個盒子中各摸出一個球,如果所摸出的球上的數(shù)字之和小于 6,那 么小王去,否則就是小李去.

(1)用樹狀圖或列表法求出小王去的概率;

(2)小李說:“這種規(guī)則不公平.”你認同他的說法嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖ABCD,∠B80°,∠BCE20°,∠CEF80°,請判斷ABEF的位置關(guān)系,并說明理由.

解:理由如下:

ABCD

∴∠B=∠BCD   

∵∠B80°

∴∠BCD80°   

∵∠BCE20°,

∴∠ECD100°

又∵∠CEF80°

   +   180°

EF   

又∵ABCD,

ABEF   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)yx24x3的圖象與x軸交于A,B兩點(B在點A的右側(cè))y軸交于點C,拋物線的對稱軸與x軸交于點D.

(1)求點A,B和點D的坐標;

(2)y軸上是否存在一點P,使PBC為等腰三角形?若存在,請求出點P的坐標;

(3)若動點M從點A出發(fā)以每秒1個單位長度的速度沿AB向點B運動,同時另一個動點N從點D出發(fā),以每秒2個單位長度的速度在拋物線的對稱軸上運動當點M到達點B,M,N同時停止運動,問點M,N運動到何處時,MNB的面積最大,試求出最大面積.

    (備用圖)

查看答案和解析>>

同步練習冊答案